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Abstract

This paper formalizes biological intelligence as search efficiency in multi-scale
problem spaces, aiming to resolve epistemic deadlocks in the basal “cognition
wars” unfolding in the Diverse Intelligence research program. It extends classical
work on symbolic problem-solving to define a novel problem space lexicon and
search efficiency metric. Construed as an operationalization of intelligence, this
metric is the decimal logarithm of the ratio between the cost of a random walk and
that of a biological agent. Thus, the search efficiency measures how many orders
of magnitude of dissipative work an agentic policy saves relative to a maximal-
entropy search strategy. Empirical models for amoeboid chemotaxis and barium-in-
duced planarian head regeneration show that, under conservative (i.e., intelligence-
underestimating) assumptions, even ‘simple’ organisms are from two-hundred- to
sextillion-fold more efficient in problem space exploration. In this sense, the deep
insights of neuroscience are not about neurons per se, but about the policies and
patterns of physics and mathematics that function as a kind of “cognitive glue”
binding parts toward higher levels of collective intelligence in wholes of highly di-
verse composition and origin. Therefore, our synthesis argues that the “mark of the
cognitive” is perhaps better sought in the measurable efficiency with which living
systems, from single cells to complex organisms, traverse energy and information
gradients to tame combinatorial explosions-one problem space at a time.
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1 Cognition all the way down

In the past two decades, cognitive science has increasingly expanded its scope
beyond the zoocentric, brain-bound processes of humans and higher animals toward
a much broader range of life phenomena traditionally off “the mark of the cognitive”
(Adams and Garrison, 2013). A leading edge of this expansion is the basal cognition
research program (Manicka and Levin, 2019; Levin et al., 2021; Lyon et al., 2021;
Lyon and Cheng, 2023; Fabregas-Tejeda and Sims, 2025), a subset of the field of
Diverse Intelligence (Levin, 2022, 2023a, Levin, 2025,Pio-Lopez et al., 2022, Claw-
son and Levin, 2023, Lagasse and Levin, 2023, Watson and Levin, 2023, McMillen
and Levin, 2024), specifically focused on the evolutionary history of cognition and
how it scaled from primitive versions to more complex ones. A wide variety of non-
brainy systems have now been shown to exhibit learning, decision-making, and other
competencies normally studied by cognitive and behavioral science (Baluska and
Levin, 2016; Katz et al., 2018; Vallverdu et al., 2018; Gershman et al., 2021; Katz
and Fontana, 2022; Kaygisiz and Ulijn, 2025). This “cognitive biology 2.0” (Lyon,
2025) paradigm casts cognition as a bio-functional continuum that might begin even
earlier than single cells, let alone brains—e.g., molecular networks or materials (Fig.
1) (Bose, 1902; Power et al., 2015; Katz et al., 2018; Biswas et al., 2021, 2022; Katz
and Fontana, 2022)—and is a “biological necessity” for all life forms (Shapiro, 2021;
Lane, 2022; Lyon and Cheng, 2023).

7 o 7

Fig. 1 Memory in molecular pathways. chemical signaling pathways, such as gene-regulatory net-
works (GRNs), can be treated as generic agents amenable to the analytic tools of behavioral science.
In networks modelled by either boolean logic or continuous ordinary differential equations, sequential
stimulation of specific input nodes produces plastic changes in the activity of distal output nodes that
recapitulate canonical forms of learning, including habituation, sensitization, and even classical (pav-
lovian) conditioning (Pigozzi et al., 2025). Top row, schematic of associative learning in the dog—bell
paradigm: presentation of the conditioned stimulus (CS, bell) alone elicits no salivation; pairing of
the CS with the unconditioned stimulus (UCS, steak) elicits salivation; after training, the CS alone
evokes the conditioned response (R, salivation). Bottom row, equivalent behavior in an in silico GRN:
activation of an input node encoding the CS is initially uncorrelated with the activity of an output node
(R); concomitant activation of a separate UCS node induces plastic changes that strengthen the causal
linkage between CS and R, such that subsequent stimulation of the CS node alone triggers a robust
response in the R node. Node size reflects connectivity (degree), and edge thickness reflects interaction
strength. Grey arrows indicate the temporal sequence of events
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Therefore, cognition requires a phylogenetically deep, bottom-up rather than an a
priori-armchaired methodological approach (Lyon et al., 2021). In particular, it has
been suggested that a critical aspect of a comprehensive picture is the understanding
of coexistence (cooperation, competition, etc.) of the many agents, of diverse spatio-
temporal scales and competencies, that exist at different levels of organization in the
body, which has been formalized via the multi-scale competency architecture (Fields
and Levin, 2022) (Fig. 2) and the concept of polycomputing (Bongard and Levin,
2023).

But what is cognition under this view? According to a “phyletically neutral” oper-
ational definition (Lyon, 2020, p. 416): “Cognition is comprised of sensory and other
information-processing mechanisms an organism has for becoming familiar with,
valuing, and interacting productively with features of its environment in order to meet
existential needs, the most basic of which are survival/persistence, growth/thriving,
and reproduction.” This emphasizes the basic, early phases of cognitive develop-
ment; however, more advanced capabilities (but still already present at the multicel-
lular tissue level) involve identification of new problems to solve and new spaces to
project into, balancing surprise minimization (active inference) and creative explo-
ration (infotaxis), as well as drives towards metamorphosis (not merely persistence
of status quo, but growth and change) (Levin, 2024). Lyon et al. (2021) synthesize
these capacities into a minimalist “toolkit” (Table 1 in Lyon et al. (2021)) and map

Biological
Cognition

Free energy

P. felina =
G. dorotocephala

Fig. 2 Multi-scale competency architecture. biological systems occur as nested layers of scale and
organizational complexity, ranging from subcellular molecular pathways to swarms of organisms in
ecosystems. Uniquely, living systems exhibit active agency (in the cybernetic sense (Rosenblueth et
al., 1943)) at each scale, with multiple subsystems exhibiting memory and some degree of competency
at navigating a wide variety of problem spaces with specific future-oriented agendas. The multiscale
competency architecture is evinced by each level deforming the option space for its parts (e.g., through
hacking them via behavior-shaping stimuli), resulting in activity that serves system-level agendas in
new problem-spaces of which the parts may have no knowledge. Images by Jeremy Guay of Peregrine
creative, except for the planarian morphospace panel, which is by Alexis Pietak
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them onto widely evolutionarily conserved biological intra- and inter-cellular pro-
cesses (Table 2 in Lyon et al. (2021)), arguing, based on recent evidence (Lyon, 2015;
Prindle et al., 2015; Sourjik and Vorholt, 2015, Yang, Bialecka-Fornal, Weatherwax,
Larkin, Prindle, Liu, Garcia-Ojalvo and Siiel, Yang et al.) that these mechanisms long
pre-date neurons and scale hierarchically from intracellular to organismal levels (see
also ). Apropos consciousness (Ellia and Chis-Ciure, 2022; Seth and Bayne, 2022;
Chis-Ciure et al., 2024; Chis-Ciure, 2025; Zheng et al., 2025), we do not make any
claims here but, for now, merely note the following. Body tissues outside of the Left
hemisphere do not have the benefit of the ability to use eloquent language to convince
novice observers like us of the presence of an inner perspective in an unconven-
tional embodiment. However, most—all?—of the molecular mechanisms, behaviors,
and information-processing dynamics (such as metrics of causal emergence) that are
found in brains and widely used to underpin charitable assessments of the problem
of Other Minds, are found elsewhere in the body (Pezzulo and Levin, 2015; Varley et
al., 2024; Blackiston et al., 2025; Pigozzi et al., 2025). To whatever extent conscious-
ness tracks these measurable features, the possibility of its presence should be taken
seriously in many contexts outside of brains.

To maintain a connection with state-of-the-art empirical results, we have focused
on problem-solving competencies. In the What is cognition? symposium by Bayne et
al. (2019), Nicola Clayton makes a distinction between flexible problem-solving that
can be transferred to new contexts, heuristic rules (core knowledge), and associative
learning mechanisms. Examples of flexible use of molecular mechanisms in new
morphogenetic contexts have been reported: e.g., the use of cytoskeletal bending
to create structures out of one giant cell, instead of the normal multicellular mecha-
nisms, when cell size is artificially drastically increased. However, we urge caution
and flexibility in mapping competencies from other embodiments and other problem
spaces onto familiar concepts in behavior science. If cognition is to be useful out-
side the N=1 example of brainy life on Earth, we need to be prepared for plasticity
in our conventional definitions of cognition. Certainly, one needs some guardrails
for the concept to have any meaning, but unless “Cognition” is to mean “Whatever
brains do here on Earth” ex cathedra, we need to have some capacity for interesting
new features and properties that differ in their details from how it is implemented in
neuron-based navigation of 3D space.

Zooming in on one incarnation of this research program, (Fields and Levin 2022)
sought to generalize these ideas beyond their canonical medium so that they could
apply to multiple levels of organization within living systems. They proposed a view
that addresses the specific-scale-transcending, compositional aspect of biological
cognition (Levin, 2019). Their core idea is that competency in navigating arbitrary
problem spaces is a scale-free invariant for analyzing cognition and agency across
diverse biological (and synthetic) embodiments. According to them, biological agents
at every organizational level traverse multiple, observer-defined problem spaces:
transcriptional attractor landscapes, physiological homeostatic manifolds, anatomi-
cal morphospaces, 3D behavioral spaces, or informational domains underpinning
symbolic manipulations and social interactions (Fig. 1). Evolution, they argue, has
co-opted and generalized problem-solving heuristics—formalized as variational free-
energy minimization (Friston, 2010, Friston, 2019,Fields et al., 2022, Friston et al.,
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2023, Fields, 2024)—to optimize trade-offs between heterogeneous data and goals
to converge on context-sensitive, adaptive policies across networks, collectives and
communities (see also earlier work by Friston et al. (2015) and Pezzulo and Levin
(2016) for modeling along these lines) (Fig. 3).

In this model, navigation of a problem space by a system is taken to instantiate
intelligence in the sense of William James (1995): some degree of competency in
reaching the same goal (state) by diverse means when circumstances change. Numer-
ous examples have been published of invariant morphogenesis despite radical defor-
mations (Pezzulo and Levin, 2015, Levin, 2023b), transcriptional and physiological
adaptation to knock-down of important components (Emmons-Bell et al., 2019),
behavioral robustness in the face of drastic sensory-motor reconfiguration (Black-
iston et al., 2025), and cellular connections adapting via novel routes (Little et al.,
2009). These are all examples of “flexibility,” as per James’ emphasis on multiple
paths toward a specific (or generalized) goal, which are even more impressive than
the ubiquitous ability of “knowing when to stop,” such as the error minimization
competencies of organ regeneration in amphibia (Pezzulo and Levin, 2016). In turn,
the scope of a system’s goals is taken to define the collective intelligence (Levin,
2019), because it serves as a binding model that orchestrates the parts to act coher-
ently. The scale of the goal state that the system is able to reliably achieve, despite
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Fig. 3 Diverse spaces for navigational intelligence. human observers are primed to notice intelligent
behavior of medium-sized objects moving at medium speeds through 3-dimensional space. But biol-
ogy was exhibiting navigation of problem spaces long before muscle (and the nerve needed to operate
it) came on the scene. Molecular circuits, cells, tissues, and organs navigate transcriptional, metabolic,
and anatomical morphospaces, performing perception-decision-action loops to achieve adaptive goal
states. Panels in the top row on the right are from the video “crows are being trained to pick up cigarette
butts and clean cities,” produced by nameless network, and, respectively, a design by Ruben van der
vleuten and Bob Spikman for crowded cities, 2017. Panels in the bottom row taken with permission
from references Marder and Goaillard (2006), Huang et al. (2009), Cervera et al. (2021), respectively
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various impediments from the external environment and even perturbations of its
own parts, is defined as the system’s “cognitive light cone.”

From a broader perspective, this line of thinking about intelligence mirrors
Shadlen’s when he says that “a precise definition of ‘cognitive’ is less essential than
the recognition of its elemental features: flexibility, contingency, and freedom from
immediacy” (Bayne et al., 2019, p. R612). While ‘cognition’ is arguably a more dif-
fuse concept that includes intelligence, all the intelligence-involving features the
quote mentions are instantiated in the problem-solving and time-shifting elements of,
e.g., morphogenetic decision-making. The main contribution of this paper concerns
intelligence and covers both cellular chemotaxis and morphogenesis, as problem-
solving behavior is now experimentally tractable, practically applicable to unconven-
tional agents, and more conducive to formalizations. Nevertheless, current evidence
and our and others’ analytic results license extrapolations about cognition generali-
ter: a strategy one might characterize as ‘the proof of cognition is in the problem-
solving pudding.’

2 Not so fast?

Zooming out to the dialectical setting of the basal cognition within the Diverse Intel-
ligence program, (Lyon and Cheng 2023) argue that the historical tether between cog-
nition and nervous-system complexity is heir to Lamarck’s dictum and was amplified
by twentieth-century cognitivism. Hence, that tether has become indefensible in the
21st century’s intellectual environment, and a “shift in cognitive gravity” away from
brains and toward the cellular architectures that preceded them is indispensable. Nev-
ertheless, not everyone is ready to pivot their cognitive gravity toward a basal cog-
nition-style approach to all-things-minded, and have entrenched sceptical positions
in the “cognition wars” (Adams and Aizawa, 2010; Adams, 2018; Loy et al., 2021;
Figdor, 2022, 2024; Fabregas-Tejeda and Sims, 2025).

On the conceptual side, 2 charges the proponents of cognition in unconventional
systems with equivocating on terms like “learning,” “memory,” or “decision-mak-
ing,” and with relying on a terminological loosening or metaphorical extension of
such concepts rather than demonstrating genuine cognitive processes as traditionally
understood. While cells and even plants exhibit adaptive, information-driven behav-
ior, cognition in the ‘thick’ sense involves representations possessing: (i) intentional-
ity, which is the capacity to represent objects or states of affairs; (ii) intensionality,
that is, the further capacity to represent them under specific aspects, allowing for
different cognitive attitudes towards extensionally identical referents 2, p. 23; and
(iii) the possibility of misrepresentation, namely, the fact that internal states, qua
representations, can be false or fail to accurately map onto the world (Dretske, 1986;
Fodor, 2002).

However, one could argue that these features are present, in basal form, in morpho-
genetic examples of intelligence (Levin, 2023c, d, Levin, 2025, McMillen and Levin,
2024). For example, representations of counterfactual states are seen in planarian
flatworms in which a stable bioelectric pattern indicates the future number of heads
to make if the animal gets injured (Levin et al., 2019). In other words, the number of
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heads that cells should grow upon injury is determined by a re-writable physiologi-
cal pattern memory, and the state of that memory encodes not the current number of
heads (which can differ) but a stored, decodable representation of a “correct” planar-
ian that serves as a guide for regenerative growth, remodeling, and cessation of activ-
ity once the represented goal state is achieved. Moreover, symbolic interpretation of
signs, i.e., semiosis (Salthe, 1998; Barbieri, 2008; Brier, 2008; Turner, 2016), is seen
in the arbitrary nature of bioelectric organ prepatterns, which are sparse signals that
do not directly encode the myriad forces needed to implement anatomical outcome
but serve that function only because the cell collective interprets these arbitrary pat-
terns with mutually agreed-upon meanings (Levin and Martyniuk, 2018). And, much
as other collective intelligences like ant colonies fall for visual illusions (Sakiyama
and Gunji, 2016), morphogenesis can likewise exhibit errors of perception of pattern
memory and stimuli, as well as errors of inference, which lead to abnormal outcomes
(Pezzulo, 2020; Pezzulo et al., 2021; Pio-Lopez et al., 2022).

From a different angle, Figdor (2022) criticizes the program’s “freewheeling use
of functional ascriptions,” which neglects the evolutionary individuation of biologi-
cal characters. The argument, grounded in Character-Species Separation (CSS) and
Character-Phenotype Separation (CPS) principles, posits that cognitive functions
must co-evolve with their substrate-dependent biological realisers. Through this
move, it calls into question the functionalist assumption explicitly endorsed by Levin
et al. (2021) that cognitive roles can be unparsimoniously ascribed across clades
because it erases lineage-specific histories (CSS) and divorces functions from the
phenotypical realisers that individuate them (CPS).

On this point, it bears stressing that the view of Levin (2019, 2022) derives from
the extension of the Problem of Other Minds to all systems, not just human brains.
In other words, possible cognitive states in unconventional agents are epistemically
latent under an inferential veil. Observers such as researchers, conspecifics, parasites,
etc., must abductively infer and formalize their putative goals and problem structures
by reverse-engineering problem-solving trajectories from observed data (Rouleau
and Levin, 2023). This means that cognitive assessments of any system should be
considered as claims about the efficacy of specific behavioral interaction protocols
(sets of tools, from cybernetics to psychoanalysis), which are to be established empir-
ically. These are taken to be not unique ground truth but observer-relative, consistent
with Dennett’s Intentional Stance (Dennett, 1998) and the polycomputing framework
in which multiple observers can usefully interpret the same physical events in differ-
ent ways (Bongard and Levin, 2023). Furthermore, at the research bench, it means
that any ascription of cognitive terms to a system, or the softening of boundaries of
ancient linguistic categories, must not be free-wheeling or poetics, but rather pre-
scripted by their demonstrated utility in driving novel discoveries and enabling new
empirical capabilities—in a nutshell, by improved fertility for new research as com-
pared to conventional formalisms.

On the empirical side, in a comprehensive review of 20th-century and recent
evidence, Loy et al. (2021) argue that, despite abounding Pavlovian-style rigorous
experiments, associative learning, a paradigm central to understanding cognition,
demonstrates clear limitations and at least partial lack of replicability when applied
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to unicellular organisms like E. Coli (see also Dussutour (2021)), or protists like
Paramecium aurelia or Physarum polycephalum.

On the one hand, we respond to this by agreeing that experimentally probing
claims of intelligence in unconventional systems is fraught with difficulties and, in
many ways, constitutes an IQ test for the observer (Levin, 2023a). Still, the extensive
references to empirical results we provided so far, and the formal results we take
up next, license, in our view, optimism about the prospects of this research field,
one that can only benefit from course corrections as those provided by Loy et al.
(2021). On the other hand, we think Chittka is on the right track when saying: “There
is, however, no clear demarcation between sub-cognitive processes — for example,
non-associative learning such as habituation, or classical conditioning — and cogni-
tive operations. Nor is it clear that the former evolved first and the latter were added
sequentially over evolutionary time according to complexity. The same neural cir-
cuits that mediate ‘simple’ associative learning can also underpin basic rule learning
and non-trivial logical operations such as the XOR problem” (Bayne et al., 2019, p.
R610). If, empirically, the divide between the sub-cognitive and the cognitive is argu-
ably porous, the most promising stance is the one that leads to more breakthroughs
and that, in our view, is flexibility or deflationism (Allen, 2017) about definitions
rather than a priori entrenching.

Taking a step back, the basal cognition wars seem to rehearse epistemic deadlocks
familiar from other cognitive science debates (Piredda, 2017; Harrison et al., 2022;
Facchin, 2023; Fabregas-Tejeda and Sims, 2025). Thus, while proponents point
to context-sensitive, adaptive capacities across evolutionarily distant lineages that
allegedly warrant cognitive function attribution, sceptics caution against terminologi-
cal dilution, data misinterpretation, and the misapplication of concepts with semantic
parameters well-defined only for more complex, nervous-system-endowed metazo-
ans. This deadlock stems partially from ambiguity: the grain of the ‘atomic’ unit
of cognition diverges across “disciplinary silos” (Lyon et al., 2021, p. 3) and lacks
systematic formalization beyond broad operational definitions (cf. Lyon (2020)) and
initial mathematization attempts (cf. Fields and Levin (2022)). We concur that the
problem is both methodological and conceptual: How does one operationalize and
measure cognition across radically different embodiments and scales without beg-
ging the question or straining analogies?

In our view, this theoretical cul-de-sac could be partially resolved via more precise,
operationalizable, and scalable frameworks that retain a meaningful sense of thick-
ness for a bio-cosmopolitan concept of cognition capable of guiding ongoing and
future empirical efforts (Levin and Dennett, 2020). Moreover, we think it is important
to hold open the possibility that our existing criteria for specific cognitive phenomena
(e.g., precise definitions of Pavlovian conditioning, habituation, etc) from behavioral
science will need to be expanded or modified in order to apply to diverse intelligent
systems. On the one hand, it makes sense not to loosen criteria and expand terms to
the point that they lose their meaning. On the other hand, expecting all embodiments
to comply with specific criteria developed with an intense focus on brains and animal
behavior is begging the question, in terms of assuming that brains set the standard for
“bona fide” cognitive skills.
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Finding a good balance, we suggest, requires two things. First, an unflinching
inquiry into what is the essence of each of these phenomena: What is it really that
we are trying to capture, if we let go of comforting but limiting criteria set by prop-
erties of neurons and neural networks? Doing so has led to important advances, for
example, in the discovery of commonalities between learning and population-level
processes in evolution (Power et al., 2015; Livnat and Papadimitriou, 2016; Watson
and Szathmary, 2016; Watson et al., 2016; Kouvaris et al., 2017), which in turn shed
light on aspects of machine learning and other fields. Second, the ultimate judge of
the legitimacy of unification must be empirical success: the degree of prediction,
control, and fecundity for driving new discoveries and new capabilities determines
whether a particular set of tools and concepts is legitimately expanded to a new
domain. In the last few decades, the field of Diverse Intelligence has been driving a
remarkable richness of new discoveries that spread across bioengineering, regenera-
tive medicine, evolutionary biology, ecology, behavioral science, artificial life, and
more (Levin, 2021, Reber and Baluska, 2021, Baluska et al., 2022, Davies and Levin,
2023, Lagasse and Levin, 2023, Mathews et al., 2023, Miller et al., 2023).

This section has given preliminary answers to some of the critics by drawing on
cutting-edge literature in several fields. However, our main contribution to this epis-
temological deadlock is non-technically summarized in Sect. 3 and developed in
more empirical and mathematical detail in Sects. 4, 5, and 6.

3 The argument in a nutshell

The present paper makes strides toward addressing the breadth-depth trade-off in
utilizing cognition-loaded concepts within the diverse intelligence program, aiming
to reinforce its theoretical foundations. Specifically, our contribution is to formally
sharpen and extend the MCA view proposed by Fields and Levin (2022) by meeting it
on its own terms: navigation in problem spaces under variational physical principles.
However, complementary to but distinct from their earlier (Friston et al., 2015; Pez-
zulo and Levin, 2016) and subsequent (Fields et al., 2022; Fields, 2024) works, our
approach takes a cue from the skeptics (Adams and Garrison, 2013; Adams, 2018;
Figdor, 2022) and begins from the human case by revisiting the classical formulation
of problem-solving by Newell and Simon (1972), developed initially for symbolic
intelligence (Burns and Vollemeyer, 2000). In their Turing award lecture, Newell
and Simon (1976, p. 123) capture perfectly the core tenet of our project: “The task
of intelligence, then, is to avert the ever-present threat of the exponential explosion
of search.”

Thus, Sect. 4 argues that this problem space (P) formalism, when suitably
extended, provides an expressive, substrate-agnostic lexicon for analyzing goal-
directed adaptive behavior beyond its original remit. To this end, in Sects. 5 and 6, we
illustrate the versatility of this adapted formalism by applying it to unconventional
examples such as amoeboid chemotaxis and planarian regeneration, contributing to
existing intuition-building efforts for how cellular and morphogenetic processes can
be cast as a search within specific problem spaces (Fields and Levin, 2022; Fields et
al., 2022; Fields, 2024).
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We recognize that mappings from abstract constructs to biological structures and
processes are a dime a dozen, so we pivot next toward a novel operationalization of
biological intelligence: search efficiency in problem space (K). This is a strategic
move: As a scalar effectiveness metric for possibly very different problem-solving
processes, K shifts focus from the vague umbrella concept of cognition and its vari-
ous functions (e.g., decision-making, memory, learning, concept formation, etc.),
which skeptics warn that they atrophy into metaphor when transplanted from vali-
dated use into other (literal) walks of life.

Defined as the logarithmic ratio of the cost of a blind search to the cost of an
agentic search policy, K quantifies how many orders of magnitude more efficient an
agent is compared to a random walk in a given problem space P. Chance might not
look like much the benchmark but looks deceive: it ensures lineage-, system-, scale-
and process-neutrality, which is a conceptual sine qua non for a bio-cosmopolitan
concept of cognition, i.e., one which does not beg the question by assuming that
only certain expressions (e.g., humans, higher animals) fit under “the mark of the
cognitive.” Moreover, because both the numerator and the denominator scale with
the intrinsic size of P, the metric is automatically normalized for task difficulty and
remains finite for enormous state spaces. Moreover, K is additive across independent
sub-runs and, therefore, compositional across nested sub-problems. In brief, K is
scale-invariant, controls for task complexity, is expressed in physical work units, and
puts intelligence on a continuous gradient.

Admittedly, K does not a priori equate to thick cognition (Adams, 2018); however,
because it quantifies search advantage within-scale and can be additively evaluated
across-scales (compositionality), it can precisely express how much combinatorial
“dead work™ is eliminated via increases in biological complexity. This for-all-strata-
and-problems intelligence budget, we believe, gives a mathematical sense of the type
of coordinated, system-level behaviors usually associated with “bona fide” cognition.

One may retort that organisms obviously outperform blind search and that cloth-
ing this truism in combinatorial garb adds little. We disagree. First, given case-spe-
cific empirical details and modeling assumptions, the search efficiency metric can be
computed, compared, and statistically tested across both phylogenetic and synthetic
lineages. Second, once made empirically tractable, the additive decomposition of K
across nested blankets pinpoints where—and by how much—intelligence condenses,
rendering the ‘obvious’ suddenly measurable and, therefore, refutable.

The stage is now set for Sect. 4, where we formalize this account by specifying the
extended problem space and efficient search lexicon.

4 A formal lexicon for efficient search in biological problem spaces
4.1 Problem spaces—the setup

This subsection lays the formal scaffolding. It explicates the minimal set of ele-
ments—states, operators, constraints, evaluation, and horizon—that jointly define a

scale-agnostic problem space. Doing so equips us with a lexicon for analyzing and
comparing various biological processes from a unified search efficiency perspective.
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Under a first approximation, problem spaces are abstract constructs that can
formalize adaptive, goal-directed problem-solving processes across scales of physi-
cal organisation. Formally, we define an arbitrary problem space P as an ordered
quintuple:

P=(S,0,C,E, H). ()

Here, S represents the set of all physically realisable configurations a system can
occupy that are relevant to its problem-solving activity at a given level of analy-
sis. Following Newell and Simon (1972), this includes initial Sj,;; C S and solution
Sgoal C S states (we suppress the subscript when context renders the subset obvious).

Operators O capture elementary transitions. An operator o € O maps a state s € S
to a subsequent state s’ € .S (in a deterministic setting, we have o : S — S) or to a set
of possible subsequent states (in a non-deterministic setting, we have o : S — P(.9),
where P(.5) is the powerset of S). Search requires a metric on effort, meaning each
application of an operator incurs a problem-specific cost, which we formalize by
a weight function w: O — Rx¢. A policy or trajectory m = (s¢, 0g, ...,05—1) is a
sequence of operators applied starting from an initial state so € Sinit to generate a
sequence of states sg 20y gy 2L % S, With s € Sgoal. The cumulative cost

of such a trajectory is C(m|sg) = Zi:ol w(0;).

Constraints C' C S x O exclude physically impossible moves, specifying the
bounds of the operationally accessible. Technically, C' lists forbidden state-operator
pairs, so the admissible set is its complement A = (S x O) \ C. Philosophically, C
specifies nomologically possible paths. By “physical” we mean those properties and
relations that obtain in virtue of a system’s scale-specific realization (e.g., cellular
mechanics, tissue-level bioelectrical rules, bodily positions and trajectories, etc.), not
necessarily only those properties deemed fundamental by physical theory (Stoljar,
2024).

The evaluation functional F: S — R assigns a scalar utility (larger preferred) or,
equivalently, a scalar disutility (smaller preferred) based on objectives inherent to
the problem-solving system, which reflect its intrinsic goals or viability criteria. For
biological systems, F often translates to a proxy for fitness, such as proximity to
homeostatic setpoints, morphogenetic target achievement, reproductive success, etc.
Furthermore, when conceptually unpacked, F implies that energetic, temporal, and
risk currencies compete, suggesting that, at least in biological systems, evolutionary
history selects for evaluation mechanisms that render qualitatively incommensurable
optima into a system-evaluable format to effectively guide behavior along fitness
gradients. !

'In a variational embedding of the present formalism developed elsewhere, we take E to be the variational
free energy (VFE) at the relevant scale, and for policy selection over a finite horizon H, the effective objec-
tive becomes expected free energy (the finite-horizon path integral of future free-energy terms), so optimal
search trajectories coincide with steepest-descent (least-action) flows on VFE (Friston, 2010, 2019; Parr
et al., 2022; Friston et al., 2023). Moreover, under the usual variational decomposition, ‘risk” aligns with
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Finally, the horizon H € N bounds forward look-ahead, representing the number
of steps typically considered in sequential operations within the space; this is usually
called, at least in the human case, ‘planning’ or ‘prediction.” More generally, one may
specify a real-valued time bound 7in.x and set H = [1yax/At], with At the dis-
cretization step. We numerically show in the next sections that horizons derive from
inherent physical timescales or delay lines, which functionally constrain the effective
depth or temporal range of prediction available to the system.

The classical formulation of problem spaces by Newell and Simon (1972) primar-
ily focuses on states .5, including initial and goal states, and operators O defining the
space, with evaluation F and constraints C' considered aspects of the search strategy
operating within that space. However, we include C, F, and H explicitly in our defi-
nition of P to foreground the constraints, evaluative criteria, and predictive limita-
tions that are particularly salient in the biological systems we analyze. We ‘promoted’
them to first-class elements because, as we show, biological systems often modulate
them directly as part of their adaptive repertoire. Rather than just navigating a fixed
space, this capacity for recursive adjustment of the problem spaces (via, e.g., con-
straint relaxation, preference tuning, or catalytic temporal speed-ups) is a fingerprint
of biological intelligence that our extended formalism aims to capture.

From a broader perspective, the grammar just introduced, while developed initially
for symbolic human and artificial intelligence (Newell and Simon, 1972, 1976; Burns
and Vollemeyer, 2000), is a minimal yet powerful vocabulary to analyze goal-directed
systems because it abstracts informational relationships between states, transforma-
tions, and evaluative criteria from scale-specific physical realization details, render-
ing it substrate-flexible. Nevertheless, perceptive to the skeptical lessons of Sect. 2,
we show below how our account heeds lineage-sensitive constraints (Figdor, 2022;
Fields, 2024): by parameterizing constraints, evaluation metrics, and time horizons
as empirically traceable, scale-bound variables, it ties functional ascriptions to their
material histories (rather than dispersing them promiscuously) and, in principle,
enables within- and inter-lineage comparisons.

4.2 Intelligence qua search efficiency in problem space

William James (1995) defined intelligence as “a fixed goal with variable means of
achieving it,” and this is a good entry point for specifying the relationship between
problem spaces and intelligence. In our context, we operationally define intelligence
as the capacity for effective searches, meaning applications of operators O, that reach
goal states Sgoa1 C S preferred under £, given the prevailing constraints C' and
bounded by the horizon H, despite unforeseen obstacles. Obstacles can be formal-
ized as additional forbidden pairs in C' whose existence is revealed only when they
fall within the predictive horizon H. Intelligence is, therefore, a gradient property: its
degree is the search efficiency of the system within a given problem space.
Formally, let Thina = E[C(7binalso)] denote the expected cumulative cost

C =73, w(0;), in terms of weighted operator applications, cost function w(o;),

expected complexity (or minimal description length), while ‘ambiguity’ quantifies expected conditional
entropy; hence, E operationalizes a complexity-minimizing objective under accuracy constraints.
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incurred by a maximal-entropy (unbiased) random-walk policy mp)ing on the admis-
sible graph A = (S x O) \ C, to reach any state si € Sgoa1 from an arbitrary ini-
tial state So € Sinit. Next, we write Tagent = E [C(Tagent|S0)] for the corresponding
expectation under a given system’s agentic policy Tagent. SO equipped, we formally
define the search efficiency in problem space as:

Tblind
K =logyg ( ) . )
Tagent
Equivalently, in natural units one has K = 1n110 In(7blind) = ﬁ"‘fé‘, with
agent

Tpath = In(ind) sothatasingledecimal unit (/' = 1)correspondstolog, 10 ~ 3.32

Tagent

bits of path-information gain (Shannon, 1948).

K measures how many orders of magnitude of dissipative expenditure (i.e., search
cost) an agent saves relative to maxent search. We say dissipative expenditure because
each operator application is costed by w : O — R, such that 7 inherits the physi-
cal units of w (e.g., joules, ATP hydrolysis, etc.), which cast the intelligence metric
in biophysical budgets terms rather than abstract time steps, as Figdor (2022, 2024)
cautions. Intuitively, a zero-valued K marks chance performance, K > 0 indicates
supra-random efficiency, and K > 0 reflects much larger search advantages. Each
integer increment tracks one order of magnitude faster, such that for K = n, we have
10™ more search efficiency.

Additionally, the log base choice cancels when comparing two systems. For cross-
system assessment, one can write AK = K; — Ko, such that the differences can
equally be read in bits (A K log, 10) or nats (A K In 10). However, note that K must
always be evaluated relative to a well-defined problem space P = (S,0,C, E, H),
as the specific characteristics of S, O (including w), C, and Sgoa1 determine the state-
transition graph and cost landscape upon which both 71,4 and Tagent are calculated.

Moreover, K can also be proved additively composable. To wit, if a complex
search can be expressed as a sequence of n conditionally independent stages, such
that the overall efficiency ratio (Tblind/Tagent)total iS the product of the stage-
specific efficiency ratios H?zl(rbhnd /Tagent)j» then the total search efficiency

Kcomplex = 2?21 K;. Conceptually, this means that one can assess different mech-

anistic contributions to search efficiency by considering how the trajectory cost is
written.

Here are a few other noteworthy properties. First, because both the numerator and
the denominator scale with the combinatorial size of the underlying space, K remains
finite and retains scale-invariance. Second, unlike raw reaction-time or energy-bud-
get measures, K controls for the baseline combinatorics of the task via normalizing
against a random strategy. Indeed, K is only as good as the null model: an unfairly
handicapped 7p1inq Would overestimate intelligence qua search efficiency and vice-
versa for an unfairly advantaged null model (e.g., insufficient constraints, artificially
lower operator costs, etc.). Thus, for a robust baseline, the random walk must operate
within the exact same problem space P, particularly respecting identical admissible
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sets A and cost functions w as the agent. Third, logarithmic compression linearizes
multiplicative search-time gains, preventing combinatorial explosions in |S| from
dwarfing finer algorithmic improvements—this is a desideratum for comparing, e.g.,
amoeba, planaria, and vertebrate cortex on the same axis, which is presupposed if our
intelligence notion is to be scale invariant. We now propose two biologically plau-
sible models to illustrate in practice the formal constructs introduced.

Finally, before exemplifying K biologically, we highlight an important connection
that is explored in upcoming work. The search efficiency in problem space shares
some commitments with computational efficiency in universal computation. In brief,
measures based upon algorithmic complexity bridge the gap between universal com-
putation—which, if the physical Church-Turing Thesis (Copeland and Shagrir, 2020;
Copeland, 2024) is correct, includes basal cognition—and variational free energy
treatments of self-organisation. Efficiency in this context emphasises the minimiza-
tion of the complexity of some generative model or program that generates some
solution or content. In variational approaches, this complexity is scored in terms of a
relative entropy (technically, between the posterior and prior beliefs after observing
some content to be explained). This complexity minimization is addressed in univer-
sal computation through the notion of compression, which figures in many accounts
of efficiency, e.g., Schmidhuber (2010), Mehta et al. (2014), Ruffini (2017), Griin-
wald and Roos (2019), and Friston et al. (2025). In other words, using algorithmic
complexity and, in particular, Kolmogorov complexity, optimal solutions correspond
to the program or policy with the minimum description or message length (Hinton
and Zemel, 1993; Wallace and Dowe, 1999). This perspective on efficiency under-
writes the notion of Solomonoff (2009) induction and the perspective afforded by
universal computation (Delvenne, 2009; Lake et al., 2015). Interestingly, minimum
message length formulations have been linked explicitly to variational free energy
(Hinton and Zemel, 1993; MacKay, 1995).

5 A model of search efficiency in the problem space of amoeboid
chemotaxis

5.1 A problem space for Dictyostelium discoideum chemotaxis

Biological organisms exhibit hierarchical, nested, multi-component architectures,
which makes any problem space identification non-trivial. If one zooms in on some
subunit level—which knows nothing of problem spaces at higher scales—processes
seem to operate purely mechanistically (“just physics”) without any problem-solv-
ing. If there is any cognitive agent to be found, the traditional view locates it at some
higher-order organization scale (Adams and Aizawa, 2010; Adams, 2018; Figdor,
2022), and it is usually one-agent-per-system. Basal cognition and Diverse Intel-
ligence proponents (Levin et al., 2021; Lyon et al., 2021; Levin, 2022, 2023a, d;
Levin, 2025; Lyon and Cheng, 2023, McMillen and; Levin, 2024) argue this framing
is wrong: the agential perspective (Godfrey-Smith, 2009) should morph depending
on the scale, meaning there are multiple interdependent problem-solvers (Fig. 4),
and on who is looking, that is, identifying intelligence in another system is also an
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Fig. 4 Actions in one space
enable or constrain actions
in other spaces. movement in
metabolic space provides the
energy needed to drive changes Behavior in 3D
in gene expression (as well (e.g. engulfing food)
as cell motion), which in turn
provides the building blocks
needed to change cell morphol-
ogy, which enables move-
ment (behavior in 3D), which
facilitates subsequent metabolic
gains. Image by Jeremy Guay of
Peregrine creative Gene expression
(e.g. actin)

Morphology Metabolism
(e.g. amoeboid) (e.g. digesting prey)

SO\

IQ test for the observer itself, as noted above. Indeed, it could be argued that a key
property for life at any scale is the ability to coarse-grain appropriately, not spend-
ing precious time and energy trying to track microstates like a Laplacean Demon but
rather taking the best guess at an optimal level of observation, modeling, and control
of themselves, their own parts, and features of the external environment (Fields et al.,
2021; Fields and Levin, 2023). Life can be seen as a battle of perspectives rather than
of genes, information patterns, or energy gradients. Complex biological agents often
consist of components that are themselves competent problem-solvers in their own,
usually smaller, local spaces (Levin, 2022).

Thus, in biological architectures, Fields and Levin (2022) argue that there is simul-
taneous search in multiple problem spaces interlinked across scales (e.g., transcrip-
tional, physiological, morphological, etc.) and not only in the familiar behavioral
and symbolic spaces considered initially by Newell and Simon (1972). Can our P’s
formal structure capture these unfamiliar spaces? Yes. The present subsection shows
how this abstract construct captures cellular behavior. Since the canonical agent scale
(i.e., human and animal cognition) is unlikely to raise qualms and has been exten-
sively discussed in the literature, we focus on two unconventional examples only to
build intuition and refer the reader to further similar work( (Fields et al., 2022; Fields,
2024).

One example comes from amoeboid chemotaxis (Parent and Devreotes, 1999;
Iglesias and Devreotes, 2008). Under our problem space formalism, a migrating
Dictyostelium cell navigates a shallow cyclic-AMP field, whose membrane posi-
tions can instantiate states S. Specifically, S is parameterized as a two-dimen-
sional lattice of ~ 500 cortical patches, and each patch’s occupancy probability
is updated at 0.3s intervals, matching the cAMP equilibration time derived from
Deamp ~ 3 x 10719m?2 s~ (Bhowmik et al., 2016). Operators O could correspond
to Arp2/3- and SCAR/WAVE-driven dendritic-actin bursts that nucleate ~ 3um
pseudopods roughly every 15s, as measured by live-cell actin-YFP imaging and auto-
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mated pseudopod tracking in Dictyostelium (Bosgraaf and Van Haastert, 2009; Van
Haastert and Bosgraaf, 2009; Veltman et al., 2012).

Constraints C could be realized by cortical tension and membrane integrity, which
block protrusions liable to tear the specialized layer of cytoplasm located just beneath
the plasma membrane, i.e., the cell’s cortex (Chugh and Paluch, 2018). More pre-
cisely, C' comprises a tensile ceiling of ~ 800pN /um~! beyond which actin-driven
protrusions stall, and a membrane-area conservation penalty reflecting lipid-bilayer
incompressibility (Herant and Dembo, 2010). Then, the thermodynamic cost asso-
ciated with motility (e.g., ATP hydrolysis per unit distance) provides a metric for
evaluating the functional E (to be minimized).

Finally, the effective planning horizon H is constrained by factors such as
the diffusion time of the attractant across the cell diameter or the persistence
time of exploratory structures. Numerically, for a 10pum Dictyostelium cell, the
characteristic diffusion time of cAMP across its diameter can be estimated as
T~ L?/D = (107°m)?/(3 x 1071%m?s™1) a2 0.33s, using the diffusion coeffi-
cient Deayp = 1.8 x 1078m?min~! (Bhowmik et al., 2016), which is equivalent to
3 x 1071%m?s~! employed in the earlier model by Héfer et al. (1995). Interpreting
this timescale with a hypothetical time step At ~ 0.3s, commensurate with its diffu-
sion timescales, implies an effective predictive horizon H =~ 1. Note that, since hori-
zon H is a new concept, its numerical estimation can only rely on educated guesses
based on existing empirical literature and formal models. Caveats notwithstanding, P
is expressive enough to capture amoeboid chemotaxis without presupposing explicit
human-level representation as in the classical work of Newell and Simon (1972).

5.2 How search efficient is amoeboid chemotaxis?

A Dictyostelium cell sensing a cyclic-AMP gradient must move roughly ten cell
lengths to reach a nutrient patch. First, for the blind search cost, 7in4, We estimate
the time taken by a random walk. Thus, using a conservative random-motility coef-
ficient Doy € [30,40] um? /minute (empirically bracketed by single-cell tracking
under normoxic and mildly hypoxic conditions as per Cochet-Escartin et al. (2021)),
the mean first-passage time of an unbiased walk over ten cell lengths (L = 100 pm)
is Thling = L?/D = (1.75 4 0.25) x 10*s. Compared to this empirically estimated
null model, experimental work shows that amoeboid chemotaxis closes the same gap
in (Tagent ~ 100s) (Parent and Devreotes, 1999; Levine and Rappel, 2013). Plugging
these values in our Eq. 2, we have Kamoeba = 10810 (Tblind/Tagent) = 2.18-2.30,
meaning approximately 150-200 times more efficient (corresponding to 7.2—7.6 bits
of path-information gain), which sits comfortably within the physical sensing bounds
set by correlation-time noise (Endres and Wingreen, 2008; Hu et al., 2010). This
calculated range shows that moderate uncertainty in the random-motility coefficient
D¢ep perturbs K by < 0.13, which indicates that our metric is robust to at-the-bench
measurement error.

The choice of the formula for mean first-passage time (MFPT) from a diffu-
sive process warrants technical comment. For a 1D random walk, the mean square
displacement is (z?) = 2Dt. The MFPT to reach a distance L for an absorb-
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ing boundary is often given as 7 = L?/(2D). For 2D or 3D searches, the prefac-
tor in the denominator may change (e.g., to 4D under certain approximations for
2D). Thus, the formula 7 ~ L?/D used here represents a particular convention or
approximation for the effective search time. Using, for instance, 7 ~ L?/(2D) would
halve the m,inq estimates. For the given D, this alternative formula would yield
Thlind € [0.75 x 10*,1.0 x 10%]s, and K € [log;((75), log;,(100)] ~ [1.88,2.00].
As K is a logarithmic ratio, this prefactor choice primarily introduces an additive
constant to K, i.e., log;(2) ~ 0.3. As we remark in Sect. 4, consistency in defining
Thlind 18 @ crucial aspect when comparing systems or assessing the impact of specific
adaptations. Luckily, as can be seen from the reparameterization above, the order of
magnitude for K often remains robust to such variations in the precise null model
specification, which is highly relevant to the difficult operationalization questions of
Thlind generally.

6 A model of search efficiency in the problem space of planarian
regeneration

6.1 A problem space for Dugesia head regeneration

Upping the scale, planarian head regeneration (Reddien and Sanchez Alvarado, 2004;
Reddien, 2018) is another non-mainstream candidate for problem space searching.
State-of-the-art experiments demonstrate that planarian flatworms can adapt their
regenerative mechanisms to guide cells toward target morphologies despite specific
perturbations not typically encountered during evolution, e.g., transient exposure to
or particular ion counteraction channel blockers like those involving barium (Fig. 5)
(Beane et al., 2013; Cervera et al., 2018; Levin et al., 2021, Levin, 2023a). Our prob-
lem space formalism can also accommodate tissue-level morphogenesis and shows
how morphological priors constrain the search.

Thus, translated in P, the spatial distribution of cell types and signalling mol-
ecules defining the body plan define S. More concretely, S can be approximated
by a low-dimensional vector s(t) = (p;(t), Vinem,;(t)) whose first block stores
regional neoblast and differentiated-cell densities p; measured by BrdU (5-bromo-
2’-deoxyuridine) incorporation and fluorescence-activated cell sorting (FACS), and
whose second block records anterior-posterior voltage profiles Vi, obtained with
voltage-sensitive dyes (Wenemoser and Reddien, 2010; Emmons-Bell et al., 2019).

Next, transcriptional programs and cell migrations constitute O. For example, neo-
blast division (= 6 h inter-mitotic time), directed migration at 3um /h to 6um /h, and
lineage-specific differentiation each supply elementary operators o; with empirically
determined work costs in ATP equivalents (Scimone et al., 2014; Reddien, 2018).

Constraints C' are realized by developmental polarity rules and gap junction com-
munication patterns. Polarity constraints derive from Wnt//3-catenin gradients that
bias head—tail fate: RNAi against S-catenin, pharmacological closure of innexin-11
gap junctions, or direct modification of the bioelectric prepattern with ionophores
or ion channel drugs (Beane et al., 2011; Durant et al., 2019) shifts the collective

@ Springer



257 Page 18 of 31 Synthese (2025) 206:257

control worms bioelectrically edited (E)
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Fig. 5 Bioelectrically-encoded representations in planaria. control planaria exhibit expression of ante-
rior marker genes in the head (A, green arrowhead indicates head, pink arrowhead indicates tail end),
and possess a bioelectric pattern (visualized here with voltage-sensitive fluorescent dye, green=depo-
larized) (B) that indicates the fact that complete worms should have exactly 1 head. When a worm is
amputated (C), the middle fragment reliably regenerates worms with 1 head (D). However, when the
bioelectric pattern is altered via exposure to an ionophore, animals are anatomically normal (1-headed)
and exhibit head markers normally, meaning only on one end (green arrowhead), but when cut, give
rise to 2-headed animals as indicated by their new pattern memory (Durant et al., 2017, 2019). This
change is permanent: they will continue to generate 2-headed animals in future rounds of cutting
(Oviedo et al., 2010). These data show that a single worm body can store (at least) one of two different
patterns that control how they will regenerate in the future (E), and reveal that the bioelectric pattern is
not an indicator of current state, but a representation (memory) of the morphogenetic target morphol-
ogy that will be recalled in the future if the animal is injured. Crucially, this is a counterfactual repre-
sentation that gives a sense of how the thick notion of cognition presupposing intensionality (Adams,
2018) could be instantiated in unconventional substrates such as flatworms (see discussion in sec. 2).
Moreover, planaria have an intrinsic capacity to adjust their electrophysiology as well (F), identifying
and then up- and down-regulating a handful of genes that enable them to regenerate heads that are
insensitive to an exotic toxin that destroys their native head (Emmons-Bell et al., 2019). Panel in E by
Jeremy Guay of Peregrine creative

outcomes and yields double-headed morphologies (Petersen and Reddien, 2009; Wil-
liams et al., 2020, Nogi and Levin, 2005). This illustrates how relaxing constraints C'
enlarges reachability (i.e., different s; € Sgoa1) in problem space S. As in the chemo-
tactic case, mechanical integrity adds an independent ceiling as tissue surface tension
of ~ 0.6 mN m ™! limits blastema curvature (Birkholz et al., 2019), and thus bounds
operator o; € O amplitudes.

Further, F can be realised by the deviation of the current shape from the target
morphogenetic pattern, potentially quantifiable via a variational free energy mea-
sure (Kuchling et al., 2020)). One conservative evaluation functional could be the
squared error between the live worm’s length-to-width ratio and the clonal mean ratio
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recorded for uninjured controls, an index routinely used to score shape fidelity during
regeneration (Birkholz et al., 2019).

Finally, the turnover time of neoblast progenitors constrains H qua morphological
planning. In planarian regeneration, the median G2 duration of neoblasts is roughly
6h (Newmark and Sanchez Alvarado, 2000; Wenemoser and Reddien, 2010), so,
with a discretization At = 1s matching cell-level actions, the morphological horizon
is H =2 2.2 x 10* operator cycles. Contrasting Dictyostelium’s H ~ 1 with planar-
ia’s H ~ 2.2 x 10* underscores a four-order-of-magnitude expansion in predictive
depth which shows that H preserves experimentally-validated dimensional consis-
tency, lending credence to the point that inference timescales recapitulate intrinsic
delay lines.

Importantly, transcriptional adaptation in barium-exposed planaria reveals highly
efficient search policies in high-dimensional gene-expression spaces (Emmons-Bell
etal., 2019) (proof in the following subsection). In other words, when planaria mount
a response to the barium-induced disruption of bioelectric signalling necessary for
regeneration, they do not randomly test all possible gene expression combinations,
which would be astronomically impractical. Indeed, RNA-sequencing shows that
approximately 1.98% of the transcriptome is differentially expressed during BaCly
adaptation (¢ < 0.05, > 2-fold change), indicating targeted operator selection rather
than wholesale search (Emmons-Bell et al., 2019). In other words, planaria rapidly
identify and modulate a specific subset of transcripts needed to partially restore or
compensate for disrupted physiological homeostasis in the presence of a novel ion
channel blocker, demonstrating efficient adaptation suggestive of intelligent explora-
tion of the problem space.

Here are a few extrapolations from the results above. First, experimental data sup-
port the hypothesis that, in some cases, editing constraints C' can yield larger effi-
ciency gains than adding operators O, which we illustrated above via voltage-gated
ion-channel editing in Dugesia under BaCly (Emmons-Bell et al., 2019). Indeed,
constraints are emerging as a critical aspect of biological richness (Deacon, 2012;
Montévil and Mossio, 2015; Bechtel, 2018; Juarrero, 2023; Ross, 2023). Thus, in our
examples, relaxing membrane tension or bioelectric rules can expand reachability
more than duplicating moves. Put differently, while more-of-the-same (e.g., copying
an operator) increases robustness by introducing redundancies, it also incurs costs
without any added novelty, forcing a trade-off; formally, this corresponds to Bayesian
model selection and program induction in statistics and computer science (Tenen-
baum et al., 2011; Lake et al., 2015). Second, as noted, intelligent behavior frequently
hinges on problem reformulation. Indeed, modifying O or C re-tiles the landscape
and shortens optimal paths, a tactic long appreciated in human planning and problem-
solving (Newell and Simon, 1972) yet whose biological analogs beyond behavioral
flexibility remain relatively under-explored. Third, depth arises when progress in one
space sculpts the optimiser that operates in another (Fields and Levin, 2022), pro-
ducing a hierarchy of interleaved spaces whose mutual constraints define an optimi-
zation stack.
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6.2 How search efficient is planarian regeneration?

Is Dugesia japonica head regeneration, when exposed to 1 mM barium chloride, also
search-efficient under its specific problem space when judged against an explicit ran-
dom-search baseline? Emmons-Bell et al. (2019) show that continuous BaCl, abol-
ishes anterior tissue within 72h in ~ 83% of worms, producing a sharp wound plane
at the photoreceptors. A blastema first appears after about 15 days, and a morphologi-
cally normal but BaCls-tolerant head is complete by day 37. If these adapted worms
spend 30days in freshwater, the tolerance disappears, and a second BaCl, exposure
again destroys the head within 24 h, showing that the phenotype is plastic, not geneti-
cally fixed (Levin, 2023a). As above, RNA-sequencing on fully regenerated, BaCl,
-insensitive heads identified differential expression in 1.98% of the 138026 anno-
tated D. japonica coding sequences: about 2,700 transcripts. This regulated cohort of
transcripts is enriched for bioelectric effectors; for example, the TRPM,, channel is
newly expressed, whereas several innexins and tubulins are sharply down-regulated.
Such a pattern points to a targeted rewiring of ionic conductances rather than whole-
sale transcriptional editing (Emmons-Bell et al., 2019). This is consistent with phar-
macological data showing that calcium- or chloride-channel blockade prevents the
initial BaCl, degeneration and that TRPM inhibition erases the acquired resistance
(Emmons-Bell et al., 2019).

To gauge the search speed-up of this adaptation, we consider a very conserva-
tive null model. Suppose resilience requires a concerted change in just fen of the
2,700 BaCly-responsive genes. The search space then contains (*70°) ~ 5.6 x 10?7
distinct ten-gene combinations. Neoblasts, which are the only transcriptionally plas-
tic cells, constitute roughly one-third of the body and number on the order of 10°
in a decapitated fragment; each completes a division cycle in about 30h at 13 °C.
Thus, even if every neoblast explored only a new ten-gene pattern each cycle, an
unbiased walk would require 5.6 x 1022 such rounds to sample the entire space
once, which is about 1.9 x 10%° years, corresponding to a random searcher esti-
mate of Thiing ~ 6 x 1027 s. The empirical trajectory, by contrast, converges on
a viable solution in 37days (Emmons-Bell et al., 2019, Fig. 1A-D), which gives
Tagent ~ 3.2 X 10% s. A simple calculation using our Eq. 2 yields a search effi-
ciency K = log; (6 x 10%75/3.2 x 10°s) ~ 21, roughly 10%! fimes more efficient
than the null model, corresponding to about 70 bits of path-information gain. Thus,
even when the baseline is set by an extravagantly conservative random walk, which
greatly underestimates K, the worm’s weeks-long developmental program elimi-
nates roughly ten-billion-fold of futile exploration in problem space.

Two additional technical remarks. First, the calculation deliberately underesti-
mates both the dimensionality of the ion-channel manifold (e.g., many regulators
never reach significance in the bulk RNA-seq) and the combinatorial complexity
of downstream post-translational control. Hence, K =~ 21 should be read as a mini-
mal empirically-derived bound on intelligent search. Second, the estimate already
discounts the massive parallelism of 10° neoblasts; without it, Tpiing Stretches by
another five orders of magnitude, significantly increasing K.
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7 Conclusion

Zooming out, the search efficiency construct expresses intelligence in the combinato-
rial geometry of problem spaces. The quintuple P delineates the search landscape,
whereas K records, on a logarithmic scale, the extent to which an agent prunes the
futile branches of that space relative to a maximal-entropy walk. Yet specifying the
blind walk is itself an inference problem: one must commit to a cost metric w, a
constraint set C, and an operator alphabet O that are simultaneously faithful to the
biological scale under scrutiny and commensurate with the null model. To give a neu-
robiological example, for a cortical microcircuit of 10* neurons and 10® synapses,
should the random walk wander through synaptic-weight vectors, firing-rate trajec-
tories, or entire spike sequences? Each choice alters |S| by orders of magnitude and,
thus, shifts K by an additive constant.

The upshot is that these modeling contingencies must be made transparent; other-
wise, convincing skeptics such as Figdor (2022) that cross-lineage comparisons are
methodologically sound amounts to hand-waving. K’s virtue lies precisely in forcing
such commitments into the open and rendering their quantitative impact explicit.
When those commitments are made conservatively, as in the amoeba and planarian
exemplars above, seemingly simple organisms still register many magnitude order
gains over chance, which gives preliminary modeling reasons to seat them at the
cognitive table (Barron et al., 2023, Lyon et al., 2021; Rorot, 2022; Lyon and Cheng,
2023; Seifert et al., 2024). As a final point to par the “freewheeling use of func-
tional ascriptions” criticism by Figdor (2022), we note that, while our proposal is
substrate-agnostic at the level of the P + K calculus, the empirical models we pro-
posed showcase that biological efficiency is ultimately realised by substrate-involv-
ing mechanisms that compute with a model. In practice, cells and tissues implement
generative-model computations (e.g., via ion channels, bioelectric circuits, gene-reg-
ulatory and cytoskeletal dynamics, etc.) that evaluate options over a finite prediction
horizon and thereby select paths of least action or, equivalently, maximal efficiency.
This “model computation” explains why realizers matter: bioelectric and morpholog-
ical priors and constraints sculpt the space of reachable states that define the problem
and create search efficiency gradients; conversely, editing constraints or operators (as
in planarian bioelectric reprogramming) re-tiles the landscape and shortens optimal
paths. In this sense, the realizer is not simply a carrier of dynamics (“just physics™)
but rather the physical possibility condition for there being a problem and the com-
putational means by which problem-solving efficiency is achieved.

Therefore, the current paper serves, fundamentally, as a challenge: if what is made
measurable and quantifiable here is not cognition, then what is? We re-examined the
diverse intelligence research program (Levin et al., 2021; Lyon et al., 2021; Fields
and Levin, 2022; Levin, 2022, 2023a; Lyon and Cheng, 2023) through the lens of
combinatorial search theory. After a conceptual roadmap in Sect. 3, Sect. 4 introduced
a scale-agnostic quintuple P = (S, 0, C, E, H) that reformulates classical problem-
space analysis so that constraints, evaluation functionals, and predictive horizons are
included besides states and operators. On that foundation, we defined search effi-
ciency, K, as the logarithmic ratio of the expected cost of a blind random walk to that
of an agentic policy (Eq. (2)). Empirically plausible models of amoeboid chemotaxis
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(K =~ 2) (Sect. 5) and barium-induced planarian head regeneration (K ~ 21) (Sect.
6) demonstrated that even ostensibly simple organisms prune combinatorial search
spaces by several orders of magnitude when judged against conservative null base-
lines. Upcoming work will further sharpen this apparatus by extensively linking it
with the Bayesian mechanics of the Free Energy Principle (Chis-Ciure et al., 2025).

Our overarching ambition has been to stitch a golden thread through the concep-
tual, methodological, and formal trenches of the “cognition wars” (Adams, 2018)
and sharpen a bio-cosmopolitan notion of intelligence, one that acknowledges the
skeptics’ call for rigor (Loy et al., 2021), while providing formal purchase on the
expansive claims of the diverse intelligence program. The problem-space formalism
gives a structured lexicon for describing goal-directed behavior “all the way down”
(Levin and Dennett, 2020). As we have shown, this formalism accommodates and
encourages empirically traceable parameterization, which addresses concerns about
lineage-specificity and substrate-dependence (Figdor, 2022) by tying functional
ascriptions to material histories. By operationalizing intelligence via the scalar K, we
shift attention from familiar semantic deadlocks toward an experimentally tractable,
scale-invariant metric.

The true synthetic power of our approach, however, lies in its multi-scale incarna-
tion. Instead of discrete leaps in representational kin, the resulting picture depicts the
major transitions of evolution as compound interest on investments in cross-scale
search acceleration. We, therefore, anticipate that combining the P+K calculus with
high-resolution multi-omics, live-imaging, and synthetic-biology platforms opens
the door to a comparative science of intelligent search. We hope that this will be a
powerful toolkit for enabling insight into how biological systems find the answers
they continuously seek in difficult, high-dimensional spaces, and for facilitating the
development of intervention strategies in biomedicine and bioengineering that take
advantage of biological search efficiency for inducing desired outcomes. In the end,
the value of a continuous view of life and mind will be demonstrated by the empirical
utility of communicating with and benefiting from the wisdom of the agential mate-
rial of life. The “mark of the cognitive” (Adams and Garrison, 2013), then, is best
sought in the measurable efficiency with which living systems, from single cells to
complex organisms, traverse energy and information gradients to tame combinatorial
explosions-one problem space at a time.
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