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Abstract
This paper formalizes biological intelligence as search efficiency in multi-scale 
problem spaces, aiming to resolve epistemic deadlocks in the basal “cognition 
wars” unfolding in the Diverse Intelligence research program. It extends classical 
work on symbolic problem-solving to define a novel problem space lexicon and 
search efficiency metric. Construed as an operationalization of intelligence, this 
metric is the decimal logarithm of the ratio between the cost of a random walk and 
that of a biological agent. Thus, the search efficiency measures how many orders 
of magnitude of dissipative work an agentic policy saves relative to a maximal-
entropy search strategy. Empirical models for amoeboid chemotaxis and barium-in-
duced planarian head regeneration show that, under conservative (i.e., intelligence-
underestimating) assumptions, even ‘simple’ organisms are from two-hundred- to 
sextillion-fold more efficient in problem space exploration. In this sense, the deep 
insights of neuroscience are not about neurons per se, but about the policies and 
patterns of physics and mathematics that function as a kind of “cognitive glue” 
binding parts toward higher levels of collective intelligence in wholes of highly di-
verse composition and origin. Therefore, our synthesis argues that the “mark of the 
cognitive” is perhaps better sought in the measurable efficiency with which living 
systems, from single cells to complex organisms, traverse energy and information 
gradients to tame combinatorial explosions-one problem space at a time.
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1  Cognition all the way down

In the past two decades, cognitive science has increasingly expanded its scope 
beyond the zoocentric, brain-bound processes of humans and higher animals toward 
a much broader range of life phenomena traditionally off “the mark of the cognitive” 
(Adams and Garrison, 2013). A leading edge of this expansion is the basal cognition 
research program (Manicka and Levin, 2019; Levin et al., 2021; Lyon et al., 2021; 
Lyon and Cheng, 2023; Fábregas-Tejeda and Sims, 2025), a subset of the field of 
Diverse Intelligence (Levin, 2022, 2023a, Levin, 2025,Pio-Lopez et al., 2022, Claw-
son and Levin, 2023, Lagasse and Levin, 2023, Watson and Levin, 2023, McMillen 
and Levin, 2024), specifically focused on the evolutionary history of cognition and 
how it scaled from primitive versions to more complex ones. A wide variety of non-
brainy systems have now been shown to exhibit learning, decision-making, and other 
competencies normally studied by cognitive and behavioral science (Baluška and 
Levin, 2016; Katz et al., 2018; Vallverdú et al., 2018; Gershman et al., 2021; Katz 
and Fontana, 2022; Kaygisiz and Ulijn, 2025). This “cognitive biology 2.0” (Lyon, 
2025) paradigm casts cognition as a bio-functional continuum that might begin even 
earlier than single cells, let alone brains—e.g., molecular networks or materials (Fig. 
1) (Bose, 1902; Power et al., 2015; Katz et al., 2018; Biswas et al., 2021, 2022; Katz 
and Fontana, 2022)—and is a “biological necessity” for all life forms (Shapiro, 2021; 
Lane, 2022; Lyon and Cheng, 2023).

Fig. 1  Memory in molecular pathways. chemical signaling pathways, such as gene-regulatory net-
works (GRNs), can be treated as generic agents amenable to the analytic tools of behavioral science. 
In networks modelled by either boolean logic or continuous ordinary differential equations, sequential 
stimulation of specific input nodes produces plastic changes in the activity of distal output nodes that 
recapitulate canonical forms of learning, including habituation, sensitization, and even classical (pav-
lovian) conditioning (Pigozzi et al., 2025). Top row, schematic of associative learning in the dog–bell 
paradigm: presentation of the conditioned stimulus (CS, bell) alone elicits no salivation; pairing of 
the CS with the unconditioned stimulus (UCS, steak) elicits salivation; after training, the CS alone 
evokes the conditioned response (R, salivation). Bottom row, equivalent behavior in an in silico GRN: 
activation of an input node encoding the CS is initially uncorrelated with the activity of an output node 
(R); concomitant activation of a separate UCS node induces plastic changes that strengthen the causal 
linkage between CS and R, such that subsequent stimulation of the CS node alone triggers a robust 
response in the R node. Node size reflects connectivity (degree), and edge thickness reflects interaction 
strength. Grey arrows indicate the temporal sequence of events
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Therefore, cognition requires a phylogenetically deep, bottom-up rather than an a 
priori-armchaired methodological approach (Lyon et al., 2021). In particular, it has 
been suggested that a critical aspect of a comprehensive picture is the understanding 
of coexistence (cooperation, competition, etc.) of the many agents, of diverse spatio-
temporal scales and competencies, that exist at different levels of organization in the 
body, which has been formalized via the multi-scale competency architecture (Fields 
and Levin, 2022) (Fig. 2) and the concept of polycomputing (Bongard and Levin, 
2023).

But what is cognition under this view? According to a “phyletically neutral” oper-
ational definition (Lyon, 2020, p. 416): “Cognition is comprised of sensory and other 
information-processing mechanisms an organism has for becoming familiar with, 
valuing, and interacting productively with features of its environment in order to meet 
existential needs, the most basic of which are survival/persistence, growth/thriving, 
and reproduction.” This emphasizes the basic, early phases of cognitive develop-
ment; however, more advanced capabilities (but still already present at the multicel-
lular tissue level) involve identification of new problems to solve and new spaces to 
project into, balancing surprise minimization (active inference) and creative explo-
ration (infotaxis), as well as drives towards metamorphosis (not merely persistence 
of status quo, but growth and change) (Levin, 2024). Lyon et al. (2021) synthesize 
these capacities into a minimalist “toolkit” (Table 1 in Lyon et al. (2021)) and map 

Fig. 2  Multi-scale competency architecture. biological systems occur as nested layers of scale and 
organizational complexity, ranging from subcellular molecular pathways to swarms of organisms in 
ecosystems. Uniquely, living systems exhibit active agency (in the cybernetic sense (Rosenblueth et 
al., 1943)) at each scale, with multiple subsystems exhibiting memory and some degree of competency 
at navigating a wide variety of problem spaces with specific future-oriented agendas. The multiscale 
competency architecture is evinced by each level deforming the option space for its parts (e.g., through 
hacking them via behavior-shaping stimuli), resulting in activity that serves system-level agendas in 
new problem-spaces of which the parts may have no knowledge. Images by Jeremy Guay of Peregrine 
creative, except for the planarian morphospace panel, which is by Alexis Pietak
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them onto widely evolutionarily conserved biological intra- and inter-cellular pro-
cesses (Table 2 in Lyon et al. (2021)), arguing, based on recent evidence (Lyon, 2015; 
Prindle et al., 2015; Sourjik and Vorholt, 2015, Yang, Bialecka-Fornal, Weatherwax, 
Larkin, Prindle, Liu, Garcia-Ojalvo and Süel, Yang et al.) that these mechanisms long 
pre-date neurons and scale hierarchically from intracellular to organismal levels (see 
also ). Apropos consciousness (Ellia and Chis-Ciure, 2022; Seth and Bayne, 2022; 
Chis-Ciure et al., 2024; Chis-Ciure, 2025; Zheng et al., 2025), we do not make any 
claims here but, for now, merely note the following. Body tissues outside of the Left 
hemisphere do not have the benefit of the ability to use eloquent language to convince 
novice observers like us of the presence of an inner perspective in an unconven-
tional embodiment. However, most—all?—of the molecular mechanisms, behaviors, 
and information-processing dynamics (such as metrics of causal emergence) that are 
found in brains and widely used to underpin charitable assessments of the problem 
of Other Minds, are found elsewhere in the body (Pezzulo and Levin, 2015; Varley et 
al., 2024; Blackiston et al., 2025; Pigozzi et al., 2025). To whatever extent conscious-
ness tracks these measurable features, the possibility of its presence should be taken 
seriously in many contexts outside of brains.

To maintain a connection with state-of-the-art empirical results, we have focused 
on problem-solving competencies. In the What is cognition? symposium by Bayne et 
al. (2019), Nicola Clayton makes a distinction between flexible problem-solving that 
can be transferred to new contexts, heuristic rules (core knowledge), and associative 
learning mechanisms. Examples of flexible use of molecular mechanisms in new 
morphogenetic contexts have been reported: e.g., the use of cytoskeletal bending 
to create structures out of one giant cell, instead of the normal multicellular mecha-
nisms, when cell size is artificially drastically increased. However, we urge caution 
and flexibility in mapping competencies from other embodiments and other problem 
spaces onto familiar concepts in behavior science. If cognition is to be useful out-
side the N = 1 example of brainy life on Earth, we need to be prepared for plasticity 
in our conventional definitions of cognition. Certainly, one needs some guardrails 
for the concept to have any meaning, but unless “Cognition” is to mean “Whatever 
brains do here on Earth” ex cathedra, we need to have some capacity for interesting 
new features and properties that differ in their details from how it is implemented in 
neuron-based navigation of 3D space.

Zooming in on one incarnation of this research program, (Fields and Levin 2022) 
sought to generalize these ideas beyond their canonical medium so that they could 
apply to multiple levels of organization within living systems. They proposed a view 
that addresses the specific-scale-transcending, compositional aspect of biological 
cognition (Levin, 2019). Their core idea is that competency in navigating arbitrary 
problem spaces is a scale-free invariant for analyzing cognition and agency across 
diverse biological (and synthetic) embodiments. According to them, biological agents 
at every organizational level traverse multiple, observer-defined problem spaces: 
transcriptional attractor landscapes, physiological homeostatic manifolds, anatomi-
cal morphospaces, 3D behavioral spaces, or informational domains underpinning 
symbolic manipulations and social interactions (Fig. 1). Evolution, they argue, has 
co-opted and generalized problem-solving heuristics—formalized as variational free-
energy minimization (Friston, 2010, Friston, 2019,Fields et al., 2022, Friston et al., 
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2023, Fields, 2024)—to optimize trade-offs between heterogeneous data and goals 
to converge on context-sensitive, adaptive policies across networks, collectives and 
communities (see also earlier work by Friston et al. (2015) and Pezzulo and Levin 
(2016) for modeling along these lines) (Fig. 3).

In this model, navigation of a problem space by a system is taken to instantiate 
intelligence in the sense of William James (1995): some degree of competency in 
reaching the same goal (state) by diverse means when circumstances change. Numer-
ous examples have been published of invariant morphogenesis despite radical defor-
mations (Pezzulo and Levin, 2015, Levin, 2023b), transcriptional and physiological 
adaptation to knock-down of important components (Emmons-Bell et al., 2019), 
behavioral robustness in the face of drastic sensory-motor reconfiguration (Black-
iston et al., 2025), and cellular connections adapting via novel routes (Little et al., 
2009). These are all examples of “flexibility,” as per James’ emphasis on multiple 
paths toward a specific (or generalized) goal, which are even more impressive than 
the ubiquitous ability of “knowing when to stop,” such as the error minimization 
competencies of organ regeneration in amphibia (Pezzulo and Levin, 2016). In turn, 
the scope of a system’s goals is taken to define the collective intelligence (Levin, 
2019), because it serves as a binding model that orchestrates the parts to act coher-
ently. The scale of the goal state that the system is able to reliably achieve, despite 

Fig. 3  Diverse spaces for navigational intelligence. human observers are primed to notice intelligent 
behavior of medium-sized objects moving at medium speeds through 3-dimensional space. But biol-
ogy was exhibiting navigation of problem spaces long before muscle (and the nerve needed to operate 
it) came on the scene. Molecular circuits, cells, tissues, and organs navigate transcriptional, metabolic, 
and anatomical morphospaces, performing perception-decision-action loops to achieve adaptive goal 
states. Panels in the top row on the right are from the video “crows are being trained to pick up cigarette 
butts and clean cities,” produced by nameless network, and, respectively, a design by Ruben van der 
vleuten and Bob Spikman for crowded cities, 2017. Panels in the bottom row taken with permission 
from references Marder and Goaillard (2006), Huang et al. (2009), Cervera et al. (2021), respectively
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various impediments from the external environment and even perturbations of its 
own parts, is defined as the system’s “cognitive light cone.”

From a broader perspective, this line of thinking about intelligence mirrors 
Shadlen’s when he says that “a precise definition of ‘cognitive’ is less essential than 
the recognition of its elemental features: flexibility, contingency, and freedom from 
immediacy” (Bayne et al., 2019, p. R612). While ‘cognition’ is arguably a more dif-
fuse concept that includes intelligence, all the intelligence-involving features the 
quote mentions are instantiated in the problem-solving and time-shifting elements of, 
e.g., morphogenetic decision-making. The main contribution of this paper concerns 
intelligence and covers both cellular chemotaxis and morphogenesis, as problem-
solving behavior is now experimentally tractable, practically applicable to unconven-
tional agents, and more conducive to formalizations. Nevertheless, current evidence 
and our and others’ analytic results license extrapolations about cognition generali-
ter: a strategy one might characterize as ‘the proof of cognition is in the problem-
solving pudding.’

2  Not so fast?

Zooming out to the dialectical setting of the basal cognition within the Diverse Intel-
ligence program, (Lyon and Cheng 2023) argue that the historical tether between cog-
nition and nervous-system complexity is heir to Lamarck’s dictum and was amplified 
by twentieth-century cognitivism. Hence, that tether has become indefensible in the 
21st century’s intellectual environment, and a “shift in cognitive gravity” away from 
brains and toward the cellular architectures that preceded them is indispensable. Nev-
ertheless, not everyone is ready to pivot their cognitive gravity toward a basal cog-
nition-style approach to all-things-minded, and have entrenched sceptical positions 
in the “cognition wars” (Adams and Aizawa, 2010; Adams, 2018; Loy et al., 2021; 
Figdor, 2022, 2024; Fábregas-Tejeda and Sims, 2025).

On the conceptual side, 2 charges the proponents of cognition in unconventional 
systems with equivocating on terms like “learning,” “memory,” or “decision-mak-
ing,” and with relying on a terminological loosening or metaphorical extension of 
such concepts rather than demonstrating genuine cognitive processes as traditionally 
understood. While cells and even plants exhibit adaptive, information-driven behav-
ior, cognition in the ‘thick’ sense involves representations possessing: (i) intentional-
ity, which is the capacity to represent objects or states of affairs; (ii) intensionality, 
that is, the further capacity to represent them under specific aspects, allowing for 
different cognitive attitudes towards extensionally identical referents 2, p. 23; and 
(iii) the possibility of misrepresentation, namely, the fact that internal states, qua 
representations, can be false or fail to accurately map onto the world (Dretske, 1986; 
Fodor, 2002).

However, one could argue that these features are present, in basal form, in morpho-
genetic examples of intelligence (Levin, 2023c, d, Levin, 2025, McMillen and Levin, 
2024). For example, representations of counterfactual states are seen in planarian 
flatworms in which a stable bioelectric pattern indicates the future number of heads 
to make if the animal gets injured (Levin et al., 2019). In other words, the number of 
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heads that cells should grow upon injury is determined by a re-writable physiologi-
cal pattern memory, and the state of that memory encodes not the current number of 
heads (which can differ) but a stored, decodable representation of a “correct” planar-
ian that serves as a guide for regenerative growth, remodeling, and cessation of activ-
ity once the represented goal state is achieved. Moreover, symbolic interpretation of 
signs, i.e., semiosis (Salthe, 1998; Barbieri, 2008; Brier, 2008; Turner, 2016), is seen 
in the arbitrary nature of bioelectric organ prepatterns, which are sparse signals that 
do not directly encode the myriad forces needed to implement anatomical outcome 
but serve that function only because the cell collective interprets these arbitrary pat-
terns with mutually agreed-upon meanings (Levin and Martyniuk, 2018). And, much 
as other collective intelligences like ant colonies fall for visual illusions (Sakiyama 
and Gunji, 2016), morphogenesis can likewise exhibit errors of perception of pattern 
memory and stimuli, as well as errors of inference, which lead to abnormal outcomes 
(Pezzulo, 2020; Pezzulo et al., 2021; Pio-Lopez et al., 2022).

From a different angle, Figdor (2022) criticizes the program’s “freewheeling use 
of functional ascriptions,” which neglects the evolutionary individuation of biologi-
cal characters. The argument, grounded in Character-Species Separation (CSS) and 
Character-Phenotype Separation (CPS) principles, posits that cognitive functions 
must co-evolve with their substrate-dependent biological realisers. Through this 
move, it calls into question the functionalist assumption explicitly endorsed by Levin 
et al. (2021) that cognitive roles can be unparsimoniously ascribed across clades 
because it erases lineage-specific histories (CSS) and divorces functions from the 
phenotypical realisers that individuate them (CPS).

On this point, it bears stressing that the view of Levin (2019, 2022) derives from 
the extension of the Problem of Other Minds to all systems, not just human brains. 
In other words, possible cognitive states in unconventional agents are epistemically 
latent under an inferential veil. Observers such as researchers, conspecifics, parasites, 
etc., must abductively infer and formalize their putative goals and problem structures 
by reverse-engineering problem-solving trajectories from observed data (Rouleau 
and Levin, 2023). This means that cognitive assessments of any system should be 
considered as claims about the efficacy of specific behavioral interaction protocols 
(sets of tools, from cybernetics to psychoanalysis), which are to be established empir-
ically. These are taken to be not unique ground truth but observer-relative, consistent 
with Dennett’s Intentional Stance (Dennett, 1998) and the polycomputing framework 
in which multiple observers can usefully interpret the same physical events in differ-
ent ways (Bongard and Levin, 2023). Furthermore, at the research bench, it means 
that any ascription of cognitive terms to a system, or the softening of boundaries of 
ancient linguistic categories, must not be free-wheeling or poetics, but rather pre-
scripted by their demonstrated utility in driving novel discoveries and enabling new 
empirical capabilities—in a nutshell, by improved fertility for new research as com-
pared to conventional formalisms.

On the empirical side, in a comprehensive review of 20th-century and recent 
evidence, Loy et al. (2021) argue that, despite abounding Pavlovian-style rigorous 
experiments, associative learning, a paradigm central to understanding cognition, 
demonstrates clear limitations and at least partial lack of replicability when applied 
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to unicellular organisms like E. Coli (see also Dussutour (2021)), or protists like 
Paramecium aurelia or Physarum polycephalum.

On the one hand, we respond to this by agreeing that experimentally probing 
claims of intelligence in unconventional systems is fraught with difficulties and, in 
many ways, constitutes an IQ test for the observer (Levin, 2023a). Still, the extensive 
references to empirical results we provided so far, and the formal results we take 
up next, license, in our view, optimism about the prospects of this research field, 
one that can only benefit from course corrections as those provided by Loy et al. 
(2021). On the other hand, we think Chittka is on the right track when saying: “There 
is, however, no clear demarcation between sub-cognitive processes – for example, 
non-associative learning such as habituation, or classical conditioning – and cogni-
tive operations. Nor is it clear that the former evolved first and the latter were added 
sequentially over evolutionary time according to complexity. The same neural cir-
cuits that mediate ‘simple’ associative learning can also underpin basic rule learning 
and non-trivial logical operations such as the XOR problem” (Bayne et al., 2019, p. 
R610). If, empirically, the divide between the sub-cognitive and the cognitive is argu-
ably porous, the most promising stance is the one that leads to more breakthroughs 
and that, in our view, is flexibility or deflationism (Allen, 2017) about definitions 
rather than a priori entrenching.

Taking a step back, the basal cognition wars seem to rehearse epistemic deadlocks 
familiar from other cognitive science debates (Piredda, 2017; Harrison et al., 2022; 
Facchin, 2023; Fábregas-Tejeda and Sims, 2025). Thus, while proponents point 
to context-sensitive, adaptive capacities across evolutionarily distant lineages that 
allegedly warrant cognitive function attribution, sceptics caution against terminologi-
cal dilution, data misinterpretation, and the misapplication of concepts with semantic 
parameters well-defined only for more complex, nervous-system-endowed metazo-
ans. This deadlock stems partially from ambiguity: the grain of the ‘atomic’ unit 
of cognition diverges across “disciplinary silos” (Lyon et al., 2021, p. 3) and lacks 
systematic formalization beyond broad operational definitions (cf. Lyon (2020)) and 
initial mathematization attempts (cf. Fields and Levin (2022)). We concur that the 
problem is both methodological and conceptual: How does one operationalize and 
measure cognition across radically different embodiments and scales without beg-
ging the question or straining analogies?

In our view, this theoretical cul-de-sac could be partially resolved via more precise, 
operationalizable, and scalable frameworks that retain a meaningful sense of thick-
ness for a bio-cosmopolitan concept of cognition capable of guiding ongoing and 
future empirical efforts (Levin and Dennett, 2020). Moreover, we think it is important 
to hold open the possibility that our existing criteria for specific cognitive phenomena 
(e.g., precise definitions of Pavlovian conditioning, habituation, etc) from behavioral 
science will need to be expanded or modified in order to apply to diverse intelligent 
systems. On the one hand, it makes sense not to loosen criteria and expand terms to 
the point that they lose their meaning. On the other hand, expecting all embodiments 
to comply with specific criteria developed with an intense focus on brains and animal 
behavior is begging the question, in terms of assuming that brains set the standard for 
“bona fide” cognitive skills.
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Finding a good balance, we suggest, requires two things. First, an unflinching 
inquiry into what is the essence of each of these phenomena: What is it really that 
we are trying to capture, if we let go of comforting but limiting criteria set by prop-
erties of neurons and neural networks? Doing so has led to important advances, for 
example, in the discovery of commonalities between learning and population-level 
processes in evolution (Power et al., 2015; Livnat and Papadimitriou, 2016; Watson 
and Szathmáry, 2016; Watson et al., 2016; Kouvaris et al., 2017), which in turn shed 
light on aspects of machine learning and other fields. Second, the ultimate judge of 
the legitimacy of unification must be empirical success: the degree of prediction, 
control, and fecundity for driving new discoveries and new capabilities determines 
whether a particular set of tools and concepts is legitimately expanded to a new 
domain. In the last few decades, the field of Diverse Intelligence has been driving a 
remarkable richness of new discoveries that spread across bioengineering, regenera-
tive medicine, evolutionary biology, ecology, behavioral science, artificial life, and 
more (Levin, 2021, Reber and Baluška, 2021, Baluška et al., 2022, Davies and Levin, 
2023, Lagasse and Levin, 2023, Mathews et al., 2023, Miller et al., 2023).

This section has given preliminary answers to some of the critics by drawing on 
cutting-edge literature in several fields. However, our main contribution to this epis-
temological deadlock is non-technically summarized in Sect. 3 and developed in 
more empirical and mathematical detail in Sects. 4, 5, and 6.

3  The argument in a nutshell

The present paper makes strides toward addressing the breadth-depth trade-off in 
utilizing cognition-loaded concepts within the diverse intelligence program, aiming 
to reinforce its theoretical foundations. Specifically, our contribution is to formally 
sharpen and extend the MCA view proposed by Fields and Levin (2022) by meeting it 
on its own terms: navigation in problem spaces under variational physical principles. 
However, complementary to but distinct from their earlier (Friston et al., 2015; Pez-
zulo and Levin, 2016) and subsequent (Fields et al., 2022; Fields, 2024) works, our 
approach takes a cue from the skeptics (Adams and Garrison, 2013; Adams, 2018; 
Figdor, 2022) and begins from the human case by revisiting the classical formulation 
of problem-solving by Newell and Simon (1972), developed initially for symbolic 
intelligence (Burns and Vollemeyer, 2000). In their Turing award lecture, Newell 
and Simon (1976, p. 123) capture perfectly the core tenet of our project: “The task 
of intelligence, then, is to avert the ever-present threat of the exponential explosion 
of search.”

Thus, Sect. 4 argues that this problem space (P ) formalism, when suitably 
extended, provides an expressive, substrate-agnostic lexicon for analyzing goal-
directed adaptive behavior beyond its original remit. To this end, in Sects. 5 and 6, we 
illustrate the versatility of this adapted formalism by applying it to unconventional 
examples such as amoeboid chemotaxis and planarian regeneration, contributing to 
existing intuition-building efforts for how cellular and morphogenetic processes can 
be cast as a search within specific problem spaces (Fields and Levin, 2022; Fields et 
al., 2022; Fields, 2024).
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We recognize that mappings from abstract constructs to biological structures and 
processes are a dime a dozen, so we pivot next toward a novel operationalization of 
biological intelligence: search efficiency in problem space (K). This is a strategic 
move: As a scalar effectiveness metric for possibly very different problem-solving 
processes, K shifts focus from the vague umbrella concept of cognition and its vari-
ous functions (e.g., decision-making, memory, learning, concept formation, etc.), 
which skeptics warn that they atrophy into metaphor when transplanted from vali-
dated use into other (literal) walks of life.

Defined as the logarithmic ratio of the cost of a blind search to the cost of an 
agentic search policy, K quantifies how many orders of magnitude more efficient an 
agent is compared to a random walk in a given problem space P . Chance might not 
look like much the benchmark but looks deceive: it ensures lineage-, system-, scale- 
and process-neutrality, which is a conceptual sine qua non for a bio-cosmopolitan 
concept of cognition, i.e., one which does not beg the question by assuming that 
only certain expressions (e.g., humans, higher animals) fit under “the mark of the 
cognitive.” Moreover, because both the numerator and the denominator scale with 
the intrinsic size of P , the metric is automatically normalized for task difficulty and 
remains finite for enormous state spaces. Moreover, K is additive across independent 
sub-runs and, therefore, compositional across nested sub-problems. In brief, K is 
scale-invariant, controls for task complexity, is expressed in physical work units, and 
puts intelligence on a continuous gradient.

Admittedly, K does not a priori equate to thick cognition (Adams, 2018); however, 
because it quantifies search advantage within-scale and can be additively evaluated 
across-scales (compositionality), it can precisely express how much combinatorial 
“dead work” is eliminated via increases in biological complexity. This for-all-strata-
and-problems intelligence budget, we believe, gives a mathematical sense of the type 
of coordinated, system-level behaviors usually associated with “bona fide” cognition.

One may retort that organisms obviously outperform blind search and that cloth-
ing this truism in combinatorial garb adds little. We disagree. First, given case-spe-
cific empirical details and modeling assumptions, the search efficiency metric can be 
computed, compared, and statistically tested across both phylogenetic and synthetic 
lineages. Second, once made empirically tractable, the additive decomposition of K 
across nested blankets pinpoints where—and by how much—intelligence condenses, 
rendering the ‘obvious’ suddenly measurable and, therefore, refutable.

The stage is now set for Sect. 4, where we formalize this account by specifying the 
extended problem space and efficient search lexicon.

4  A formal lexicon for efficient search in biological problem spaces

4.1  Problem spaces—the setup

This subsection lays the formal scaffolding. It explicates the minimal set of ele-
ments—states, operators, constraints, evaluation, and horizon—that jointly define a 
scale-agnostic problem space. Doing so equips us with a lexicon for analyzing and 
comparing various biological processes from a unified search efficiency perspective.

1 3

  257   Page 10 of 31



Synthese         (2025) 206:257 

Under a first approximation, problem spaces are abstract constructs that can 
formalize adaptive, goal-directed problem-solving processes across scales of physi-
cal organisation. Formally, we define an arbitrary problem space P  as an ordered 
quintuple:

 

	 P = ⟨S, O, C, E, H⟩.� (1)

Here, S represents the set of all physically realisable configurations a system can 
occupy that are relevant to its problem-solving activity at a given level of analy-
sis. Following Newell and Simon (1972), this includes initial Sinit ⊂ S and solution 
Sgoal ⊂ S states (we suppress the subscript when context renders the subset obvious).

Operators O capture elementary transitions. An operator o ∈ O maps a state s ∈ S 
to a subsequent state s′ ∈ S (in a deterministic setting, we have o : S → S) or to a set 
of possible subsequent states (in a non-deterministic setting, we have o : S → P(S), 
where P(S) is the powerset of S). Search requires a metric on effort, meaning each 
application of an operator incurs a problem-specific cost, which we formalize by 
a weight function w : O → R≥0. A policy or trajectory π = ⟨s0, o0, . . . , ok−1⟩ is a 
sequence of operators applied starting from an initial state s0 ∈ Sinit to generate a 
sequence of states s0

o0−→ s1
o1−→ . . .

ok−1−→ sk, with sk ∈ Sgoal. The cumulative cost 
of such a trajectory is C(π|s0) =

∑k−1
i=0 w(oi).

Constraints C ⊆ S × O exclude physically impossible moves, specifying the 
bounds of the operationally accessible. Technically, C lists forbidden state-operator 
pairs, so the admissible set is its complement A = (S × O) \ C. Philosophically, C 
specifies nomologically possible paths. By “physical” we mean those properties and 
relations that obtain in virtue of a system’s scale-specific realization (e.g., cellular 
mechanics, tissue-level bioelectrical rules, bodily positions and trajectories, etc.), not 
necessarily only those properties deemed fundamental by physical theory (Stoljar, 
2024).

The evaluation functional E : S →R assigns a scalar utility (larger preferred) or, 
equivalently, a scalar disutility (smaller preferred) based on objectives inherent to 
the problem-solving system, which reflect its intrinsic goals or viability criteria. For 
biological systems, E often translates to a proxy for fitness, such as proximity to 
homeostatic setpoints, morphogenetic target achievement, reproductive success, etc. 
Furthermore, when conceptually unpacked, E implies that energetic, temporal, and 
risk currencies compete, suggesting that, at least in biological systems, evolutionary 
history selects for evaluation mechanisms that render qualitatively incommensurable 
optima into a system-evaluable format to effectively guide behavior along fitness 
gradients.1

1 In a variational embedding of the present formalism developed elsewhere, we take E to be the variational 
free energy (VFE) at the relevant scale, and for policy selection over a finite horizon H , the effective objec-
tive becomes expected free energy (the finite-horizon path integral of future free-energy terms), so optimal 
search trajectories coincide with steepest-descent (least-action) flows on VFE (Friston, 2010, 2019; Parr 
et al., 2022; Friston et al., 2023). Moreover, under the usual variational decomposition, ‘risk’ aligns with 
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Finally, the horizon H ∈ N bounds forward look-ahead, representing the number 
of steps typically considered in sequential operations within the space; this is usually 
called, at least in the human case, ‘planning’ or ‘prediction.’ More generally, one may 
specify a real-valued time bound τmax and set H = ⌈τmax/∆t⌉, with ∆t the dis-
cretization step. We numerically show in the next sections that horizons derive from 
inherent physical timescales or delay lines, which functionally constrain the effective 
depth or temporal range of prediction available to the system.

The classical formulation of problem spaces by Newell and Simon (1972) primar-
ily focuses on states S, including initial and goal states, and operators O defining the 
space, with evaluation E and constraints C considered aspects of the search strategy 
operating within that space. However, we include C, E, and H  explicitly in our defi-
nition of P  to foreground the constraints, evaluative criteria, and predictive limita-
tions that are particularly salient in the biological systems we analyze. We ‘promoted’ 
them to first-class elements because, as we show, biological systems often modulate 
them directly as part of their adaptive repertoire. Rather than just navigating a fixed 
space, this capacity for recursive adjustment of the problem spaces (via, e.g., con-
straint relaxation, preference tuning, or catalytic temporal speed-ups) is a fingerprint 
of biological intelligence that our extended formalism aims to capture.

From a broader perspective, the grammar just introduced, while developed initially 
for symbolic human and artificial intelligence (Newell and Simon, 1972, 1976; Burns 
and Vollemeyer, 2000), is a minimal yet powerful vocabulary to analyze goal-directed 
systems because it abstracts informational relationships between states, transforma-
tions, and evaluative criteria from scale-specific physical realization details, render-
ing it substrate-flexible. Nevertheless, perceptive to the skeptical lessons of Sect. 2, 
we show below how our account heeds lineage-sensitive constraints (Figdor, 2022; 
Fields, 2024): by parameterizing constraints, evaluation metrics, and time horizons 
as empirically traceable, scale-bound variables, it ties functional ascriptions to their 
material histories (rather than dispersing them promiscuously) and, in principle, 
enables within- and inter-lineage comparisons.

4.2  Intelligence qua search efficiency in problem space

William James (1995) defined intelligence as “a fixed goal with variable means of 
achieving it,” and this is a good entry point for specifying the relationship between 
problem spaces and intelligence. In our context, we operationally define intelligence 
as the capacity for effective searches, meaning applications of operators O, that reach 
goal states Sgoal ⊂ S preferred under E, given the prevailing constraints C and 
bounded by the horizon H , despite unforeseen obstacles. Obstacles can be formal-
ized as additional forbidden pairs in C whose existence is revealed only when they 
fall within the predictive horizon H . Intelligence is, therefore, a gradient property: its 
degree is the search efficiency of the system within a given problem space.

Formally, let τblind = E
[
C(πblind|s0)

]
 denote the expected cumulative cost 

C =
∑

i w(oi), in terms of weighted operator applications, cost function w(oi), 

expected complexity (or minimal description length), while ‘ambiguity’ quantifies expected conditional 
entropy; hence, E operationalizes a complexity-minimizing objective under accuracy constraints.
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incurred by a maximal-entropy (unbiased) random-walk policy πblind on the admis-
sible graph A = (S × O) \ C, to reach any state sk ∈ Sgoal from an arbitrary ini-
tial state s0 ∈ Sinit. Next, we write τagent = E

[
C(πagent|s0)

]
 for the corresponding 

expectation under a given system’s agentic policy πagent. So equipped, we formally 
define the search efficiency in problem space as:

 

	
K = log10

(
τblind

τagent

)
.� (2)

Equivalently, in natural units one has K = 1
ln 10 ln( τblind

τagent
) = Ipath

ln 10 , with 

Ipath = ln( τblind
τagent

), so that a single decimal unit (K = 1) corresponds to log2 10 ≈ 3.32 
bits of path-information gain (Shannon, 1948).

K measures how many orders of magnitude of dissipative expenditure (i.e., search 
cost) an agent saves relative to maxent search. We say dissipative expenditure because 
each operator application is costed by w : O → R≥0, such that τ  inherits the physi-
cal units of w (e.g., joules, ATP hydrolysis, etc.), which cast the intelligence metric 
in biophysical budgets terms rather than abstract time steps, as Figdor (2022, 2024) 
cautions. Intuitively, a zero-valued K marks chance performance, K > 0 indicates 
supra-random efficiency, and K ≫ 0 reflects much larger search advantages. Each 
integer increment tracks one order of magnitude faster, such that for K = n, we have 
10n more search efficiency.

Additionally, the log base choice cancels when comparing two systems. For cross-
system assessment, one can write ∆K = K1 − K2, such that the differences can 
equally be read in bits (∆K log2 10) or nats (∆K ln 10). However, note that K must 
always be evaluated relative to a well-defined problem space P = ⟨S, O, C, E, H⟩, 
as the specific characteristics of S, O (including w), C, and Sgoal determine the state-
transition graph and cost landscape upon which both τblind and τagent are calculated.

Moreover, K can also be proved additively composable. To wit, if a complex 
search can be expressed as a sequence of n conditionally independent stages, such 
that the overall efficiency ratio (τblind/τagent)total is the product of the stage-
specific efficiency ratios 

∏n
j=1(τblind/τagent)j , then the total search efficiency 

Kcomplex =
∑n

j=1 Kj . Conceptually, this means that one can assess different mech-
anistic contributions to search efficiency by considering how the trajectory cost is 
written.

Here are a few other noteworthy properties. First, because both the numerator and 
the denominator scale with the combinatorial size of the underlying space, K remains 
finite and retains scale-invariance. Second, unlike raw reaction-time or energy-bud-
get measures, K controls for the baseline combinatorics of the task via normalizing 
against a random strategy. Indeed, K is only as good as the null model: an unfairly 
handicapped τblind would overestimate intelligence qua search efficiency and vice-
versa for an unfairly advantaged null model (e.g., insufficient constraints, artificially 
lower operator costs, etc.). Thus, for a robust baseline, the random walk must operate 
within the exact same problem space P , particularly respecting identical admissible 
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sets A and cost functions w as the agent. Third, logarithmic compression linearizes 
multiplicative search-time gains, preventing combinatorial explosions in |S| from 
dwarfing finer algorithmic improvements—this is a desideratum for comparing, e.g., 
amoeba, planaria, and vertebrate cortex on the same axis, which is presupposed if our 
intelligence notion is to be scale invariant. We now propose two biologically plau-
sible models to illustrate in practice the formal constructs introduced.

Finally, before exemplifying K biologically, we highlight an important connection 
that is explored in upcoming work. The search efficiency in problem space shares 
some commitments with computational efficiency in universal computation. In brief, 
measures based upon algorithmic complexity bridge the gap between universal com-
putation—which, if the physical Church-Turing Thesis (Copeland and Shagrir, 2020; 
Copeland, 2024) is correct, includes basal cognition—and variational free energy 
treatments of self-organisation. Efficiency in this context emphasises the minimiza-
tion of the complexity of some generative model or program that generates some 
solution or content. In variational approaches, this complexity is scored in terms of a 
relative entropy (technically, between the posterior and prior beliefs after observing 
some content to be explained). This complexity minimization is addressed in univer-
sal computation through the notion of compression, which figures in many accounts 
of efficiency, e.g., Schmidhuber (2010), Mehta et al. (2014), Ruffini (2017), Grün-
wald and Roos (2019), and Friston et al. (2025). In other words, using algorithmic 
complexity and, in particular, Kolmogorov complexity, optimal solutions correspond 
to the program or policy with the minimum description or message length (Hinton 
and Zemel, 1993; Wallace and Dowe, 1999). This perspective on efficiency under-
writes the notion of Solomonoff (2009) induction and the perspective afforded by 
universal computation (Delvenne, 2009; Lake et al., 2015). Interestingly, minimum 
message length formulations have been linked explicitly to variational free energy 
(Hinton and Zemel, 1993; MacKay, 1995).

5  A model of search efficiency in the problem space of amoeboid 
chemotaxis

5.1  A problem space for Dictyostelium discoideum chemotaxis

Biological organisms exhibit hierarchical, nested, multi-component architectures, 
which makes any problem space identification non-trivial. If one zooms in on some 
subunit level—which knows nothing of problem spaces at higher scales—processes 
seem to operate purely mechanistically (“just physics”) without any problem-solv-
ing. If there is any cognitive agent to be found, the traditional view locates it at some 
higher-order organization scale (Adams and Aizawa, 2010; Adams, 2018; Figdor, 
2022), and it is usually one-agent-per-system. Basal cognition and Diverse Intel-
ligence proponents (Levin et al., 2021; Lyon et al., 2021; Levin, 2022, 2023a, d; 
Levin, 2025; Lyon and Cheng, 2023, McMillen and; Levin, 2024) argue this framing 
is wrong: the agential perspective (Godfrey-Smith, 2009) should morph depending 
on the scale, meaning there are multiple interdependent problem-solvers (Fig. 4), 
and on who is looking, that is, identifying intelligence in another system is also an 
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IQ test for the observer itself, as noted above. Indeed, it could be argued that a key 
property for life at any scale is the ability to coarse-grain appropriately, not spend-
ing precious time and energy trying to track microstates like a Laplacean Demon but 
rather taking the best guess at an optimal level of observation, modeling, and control 
of themselves, their own parts, and features of the external environment (Fields et al., 
2021; Fields and Levin, 2023). Life can be seen as a battle of perspectives rather than 
of genes, information patterns, or energy gradients. Complex biological agents often 
consist of components that are themselves competent problem-solvers in their own, 
usually smaller, local spaces (Levin, 2022).

Thus, in biological architectures, Fields and Levin (2022) argue that there is simul-
taneous search in multiple problem spaces interlinked across scales (e.g., transcrip-
tional, physiological, morphological, etc.) and not only in the familiar behavioral 
and symbolic spaces considered initially by Newell and Simon (1972). Can our P ’s 
formal structure capture these unfamiliar spaces? Yes. The present subsection shows 
how this abstract construct captures cellular behavior. Since the canonical agent scale 
(i.e., human and animal cognition) is unlikely to raise qualms and has been exten-
sively discussed in the literature, we focus on two unconventional examples only to 
build intuition and refer the reader to further similar work( (Fields et al., 2022; Fields, 
2024).

One example comes from amoeboid chemotaxis (Parent and Devreotes, 1999; 
Iglesias and Devreotes, 2008). Under our problem space formalism, a migrating 
Dictyostelium cell navigates a shallow cyclic-AMP field, whose membrane posi-
tions can instantiate states S. Specifically, S is parameterized as a two-dimen-
sional lattice of ≈ 500 cortical patches, and each patch’s occupancy probability 
is updated at 0.3 s intervals, matching the cAMP equilibration time derived from 
DcAMP ≈ 3 × 10−10 m2 s−1 (Bhowmik et al., 2016). Operators O could correspond 
to Arp2/3- and SCAR/WAVE-driven dendritic-actin bursts that nucleate ≈ 3µm 
pseudopods roughly every 15s, as measured by live-cell actin-YFP imaging and auto-

Fig. 4  Actions in one space 
enable or constrain actions 
in other spaces. movement in 
metabolic space provides the 
energy needed to drive changes 
in gene expression (as well 
as cell motion), which in turn 
provides the building blocks 
needed to change cell morphol-
ogy, which enables move-
ment (behavior in 3D), which 
facilitates subsequent metabolic 
gains. Image by Jeremy Guay of 
Peregrine creative
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mated pseudopod tracking in Dictyostelium (Bosgraaf and Van Haastert, 2009; Van 
Haastert and Bosgraaf, 2009; Veltman et al., 2012).

Constraints C could be realized by cortical tension and membrane integrity, which 
block protrusions liable to tear the specialized layer of cytoplasm located just beneath 
the plasma membrane, i.e., the cell’s cortex (Chugh and Paluch, 2018). More pre-
cisely, C comprises a tensile ceiling of ≈ 800pN/µm−1 beyond which actin-driven 
protrusions stall, and a membrane-area conservation penalty reflecting lipid-bilayer 
incompressibility (Herant and Dembo, 2010). Then, the thermodynamic cost asso-
ciated with motility (e.g., ATP hydrolysis per unit distance) provides a metric for 
evaluating the functional E (to be minimized).

Finally, the effective planning horizon H  is constrained by factors such as 
the diffusion time of the attractant across the cell diameter or the persistence 
time of exploratory structures. Numerically, for a 10µm Dictyostelium cell, the 
characteristic diffusion time of cAMP across its diameter can be estimated as 
τ ≈ L2/D ≈ (10−5m)2/(3 × 10−10m2s−1) ≈ 0.33s, using the diffusion coeffi-
cient DcAMP = 1.8 × 10−8m2min−1 (Bhowmik et al., 2016), which is equivalent to 
3 × 10−10m2s−1 employed in the earlier model by Höfer et al. (1995). Interpreting 
this timescale with a hypothetical time step ∆t ≈ 0.3s, commensurate with its diffu-
sion timescales, implies an effective predictive horizon H ≈ 1. Note that, since hori-
zon H  is a new concept, its numerical estimation can only rely on educated guesses 
based on existing empirical literature and formal models. Caveats notwithstanding, P  
is expressive enough to capture amoeboid chemotaxis without presupposing explicit 
human-level representation as in the classical work of Newell and Simon (1972).

5.2  How search efficient is amoeboid chemotaxis?

A Dictyostelium cell sensing a cyclic-AMP gradient must move roughly ten cell 
lengths to reach a nutrient patch. First, for the blind search cost, τblind, we estimate 
the time taken by a random walk. Thus, using a conservative random-motility coef-
ficient Dcell ∈ [30, 40] µm2/minute (empirically bracketed by single-cell tracking 
under normoxic and mildly hypoxic conditions as per Cochet-Escartin et al. (2021)), 
the mean first-passage time of an unbiased walk over ten cell lengths (L = 100 µm) 
is τblind ≈ L2/D ≈ (1.75 ± 0.25) × 104 s. Compared to this empirically estimated 
null model, experimental work shows that amoeboid chemotaxis closes the same gap 
in (τagent ≈ 100 s) (Parent and Devreotes, 1999; Levine and Rappel, 2013). Plugging 
these values in our Eq. 2, we have Kamoeba = log10

(
τblind/τagent

)
= 2.18-2.30, 

meaning approximately 150–200 times more efficient (corresponding to 7.2–7.6 bits 
of path-information gain), which sits comfortably within the physical sensing bounds 
set by correlation-time noise (Endres and Wingreen, 2008; Hu et al., 2010). This 
calculated range shows that moderate uncertainty in the random-motility coefficient 
Dcell perturbs K by < 0.13, which indicates that our metric is robust to at-the-bench 
measurement error.

The choice of the formula for mean first-passage time (MFPT) from a diffu-
sive process warrants technical comment. For a 1D random walk, the mean square 
displacement is ⟨x2⟩ = 2Dt. The MFPT to reach a distance L for an absorb-
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ing boundary is often given as τ = L2/(2D). For 2D or 3D searches, the prefac-
tor in the denominator may change (e.g., to 4D under certain approximations for 
2D). Thus, the formula τ ≈ L2/D used here represents a particular convention or 
approximation for the effective search time. Using, for instance, τ ≈ L2/(2D) would 
halve the τblind estimates. For the given D, this alternative formula would yield 
τblind ∈ [0.75 × 104, 1.0 × 104] s, and K ∈ [log10(75), log10(100)] ≈ [1.88, 2.00]. 
As K is a logarithmic ratio, this prefactor choice primarily introduces an additive 
constant to K, i.e., log10(2) ≈ 0.3. As we remark in Sect. 4, consistency in defining 
τblind is a crucial aspect when comparing systems or assessing the impact of specific 
adaptations. Luckily, as can be seen from the reparameterization above, the order of 
magnitude for K often remains robust to such variations in the precise null model 
specification, which is highly relevant to the difficult operationalization questions of 
τblind generally.

6  A model of search efficiency in the problem space of planarian 
regeneration

6.1  A problem space for Dugesia head regeneration

Upping the scale, planarian head regeneration (Reddien and Sánchez Alvarado, 2004; 
Reddien, 2018) is another non-mainstream candidate for problem space searching. 
State-of-the-art experiments demonstrate that planarian flatworms can adapt their 
regenerative mechanisms to guide cells toward target morphologies despite specific 
perturbations not typically encountered during evolution, e.g., transient exposure to 
or particular ion counteraction channel blockers like those involving barium (Fig. 5) 
(Beane et al., 2013; Cervera et al., 2018; Levin et al., 2021, Levin, 2023a). Our prob-
lem space formalism can also accommodate tissue-level morphogenesis and shows 
how morphological priors constrain the search.

Thus, translated in P , the spatial distribution of cell types and signalling mol-
ecules defining the body plan define S. More concretely, S can be approximated 
by a low-dimensional vector s(t) =

⟨
ρi(t), Vmem,j(t)

⟩
 whose first block stores 

regional neoblast and differentiated-cell densities ρi measured by BrdU (5-bromo-
2’-deoxyuridine) incorporation and fluorescence-activated cell sorting (FACS), and 
whose second block records anterior-posterior voltage profiles Vmem obtained with 
voltage-sensitive dyes (Wenemoser and Reddien, 2010; Emmons-Bell et al., 2019).

Next, transcriptional programs and cell migrations constitute O. For example, neo-
blast division (≈ 6 h inter-mitotic time), directed migration at 3µm/h to 6µm/h, and 
lineage-specific differentiation each supply elementary operators oi with empirically 
determined work costs in ATP equivalents (Scimone et al., 2014; Reddien, 2018).

Constraints C are realized by developmental polarity rules and gap junction com-
munication patterns. Polarity constraints derive from Wnt/β-catenin gradients that 
bias head–tail fate: RNAi against β-catenin, pharmacological closure of innexin-11 
gap junctions, or direct modification of the bioelectric prepattern with ionophores 
or ion channel drugs (Beane et al., 2011; Durant et al., 2019) shifts the collective 
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outcomes and yields double-headed morphologies (Petersen and Reddien, 2009; Wil-
liams et al., 2020, Nogi and Levin, 2005). This illustrates how relaxing constraints C 
enlarges reachability (i.e., different si ∈ Sgoal) in problem space S. As in the chemo-
tactic case, mechanical integrity adds an independent ceiling as tissue surface tension 
of ≈ 0.6 mN m−1 limits blastema curvature (Birkholz et al., 2019), and thus bounds 
operator oi ∈ O amplitudes.

Further, E can be realised by the deviation of the current shape from the target 
morphogenetic pattern, potentially quantifiable via a variational free energy mea-
sure (Kuchling et al., 2020)). One conservative evaluation functional could be the 
squared error between the live worm’s length-to-width ratio and the clonal mean ratio 

Fig. 5  Bioelectrically-encoded representations in planaria. control planaria exhibit expression of ante-
rior marker genes in the head (A, green arrowhead indicates head, pink arrowhead indicates tail end), 
and possess a bioelectric pattern (visualized here with voltage-sensitive fluorescent dye, green = depo-
larized) (B) that indicates the fact that complete worms should have exactly 1 head. When a worm is 
amputated (C), the middle fragment reliably regenerates worms with 1 head (D). However, when the 
bioelectric pattern is altered via exposure to an ionophore, animals are anatomically normal (1-headed) 
and exhibit head markers normally, meaning only on one end (green arrowhead), but when cut, give 
rise to 2-headed animals as indicated by their new pattern memory (Durant et al., 2017, 2019). This 
change is permanent: they will continue to generate 2-headed animals in future rounds of cutting 
(Oviedo et al., 2010). These data show that a single worm body can store (at least) one of two different 
patterns that control how they will regenerate in the future (E), and reveal that the bioelectric pattern is 
not an indicator of current state, but a representation (memory) of the morphogenetic target morphol-
ogy that will be recalled in the future if the animal is injured. Crucially, this is a counterfactual repre-
sentation that gives a sense of how the thick notion of cognition presupposing intensionality (Adams, 
2018) could be instantiated in unconventional substrates such as flatworms (see discussion in sec. 2). 
Moreover, planaria have an intrinsic capacity to adjust their electrophysiology as well (F), identifying 
and then up- and down-regulating a handful of genes that enable them to regenerate heads that are 
insensitive to an exotic toxin that destroys their native head (Emmons-Bell et al., 2019). Panel in E by 
Jeremy Guay of Peregrine creative
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recorded for uninjured controls, an index routinely used to score shape fidelity during 
regeneration (Birkholz et al., 2019).

Finally, the turnover time of neoblast progenitors constrains H  qua morphological 
planning. In planarian regeneration, the median G2 duration of neoblasts is roughly 
6 h (Newmark and Sánchez Alvarado, 2000; Wenemoser and Reddien, 2010), so, 
with a discretization ∆t = 1s matching cell-level actions, the morphological horizon 
is H ≈ 2.2 × 104 operator cycles. Contrasting Dictyostelium’s H ≈ 1 with planar-
ia’s H ≈ 2.2 × 104 underscores a four-order-of-magnitude expansion in predictive 
depth which shows that H  preserves experimentally-validated dimensional consis-
tency, lending credence to the point that inference timescales recapitulate intrinsic 
delay lines.

Importantly, transcriptional adaptation in barium-exposed planaria reveals highly 
efficient search policies in high-dimensional gene-expression spaces (Emmons-Bell 
et al., 2019) (proof in the following subsection). In other words, when planaria mount 
a response to the barium-induced disruption of bioelectric signalling necessary for 
regeneration, they do not randomly test all possible gene expression combinations, 
which would be astronomically impractical. Indeed, RNA-sequencing shows that 
approximately 1.98% of the transcriptome is differentially expressed during BaCl2 
adaptation (q < 0.05, > 2-fold change), indicating targeted operator selection rather 
than wholesale search (Emmons-Bell et al., 2019). In other words, planaria rapidly 
identify and modulate a specific subset of transcripts needed to partially restore or 
compensate for disrupted physiological homeostasis in the presence of a novel ion 
channel blocker, demonstrating efficient adaptation suggestive of intelligent explora-
tion of the problem space.

Here are a few extrapolations from the results above. First, experimental data sup-
port the hypothesis that, in some cases, editing constraints C can yield larger effi-
ciency gains than adding operators O, which we illustrated above via voltage-gated 
ion-channel editing in Dugesia under BaCl2 (Emmons-Bell et al., 2019). Indeed, 
constraints are emerging as a critical aspect of biological richness (Deacon, 2012; 
Montévil and Mossio, 2015; Bechtel, 2018; Juarrero, 2023; Ross, 2023). Thus, in our 
examples, relaxing membrane tension or bioelectric rules can expand reachability 
more than duplicating moves. Put differently, while more-of-the-same (e.g., copying 
an operator) increases robustness by introducing redundancies, it also incurs costs 
without any added novelty, forcing a trade-off; formally, this corresponds to Bayesian 
model selection and program induction in statistics and computer science (Tenen-
baum et al., 2011; Lake et al., 2015). Second, as noted, intelligent behavior frequently 
hinges on problem reformulation. Indeed, modifying O or C re-tiles the landscape 
and shortens optimal paths, a tactic long appreciated in human planning and problem-
solving (Newell and Simon, 1972) yet whose biological analogs beyond behavioral 
flexibility remain relatively under-explored. Third, depth arises when progress in one 
space sculpts the optimiser that operates in another (Fields and Levin, 2022), pro-
ducing a hierarchy of interleaved spaces whose mutual constraints define an optimi-
zation stack.
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6.2  How search efficient is planarian regeneration?

Is Dugesia japonica head regeneration, when exposed to 1 mM barium chloride, also 
search-efficient under its specific problem space when judged against an explicit ran-
dom-search baseline? Emmons-Bell et al. (2019) show that continuous BaCl2 abol-
ishes anterior tissue within 72 h in ≈ 83% of worms, producing a sharp wound plane 
at the photoreceptors. A blastema first appears after about 15 days, and a morphologi-
cally normal but BaCl2-tolerant head is complete by day 37. If these adapted worms 
spend 30 days in freshwater, the tolerance disappears, and a second BaCl2 exposure 
again destroys the head within 24 h, showing that the phenotype is plastic, not geneti-
cally fixed (Levin, 2023a). As above, RNA-sequencing on fully regenerated, BaCl2
-insensitive heads identified differential expression in 1.98% of the 138 026 anno-
tated D. japonica coding sequences: about 2,700 transcripts. This regulated cohort of 
transcripts is enriched for bioelectric effectors; for example, the TRPMα channel is 
newly expressed, whereas several innexins and tubulins are sharply down-regulated. 
Such a pattern points to a targeted rewiring of ionic conductances rather than whole-
sale transcriptional editing (Emmons-Bell et al., 2019). This is consistent with phar-
macological data showing that calcium- or chloride-channel blockade prevents the 
initial BaCl2 degeneration and that TRPM inhibition erases the acquired resistance 
(Emmons-Bell et al., 2019).

To gauge the search speed-up of this adaptation, we consider a very conserva-
tive null model. Suppose resilience requires a concerted change in just ten of the 
2,700 BaCl2-responsive genes. The search space then contains 

(2700
10

)
≈ 5.6 × 1027 

distinct ten-gene combinations. Neoblasts, which are the only transcriptionally plas-
tic cells, constitute roughly one-third of the body and number on the order of 105 
in a decapitated fragment; each completes a division cycle in about 30 h at 13 ◦C. 
Thus, even if every neoblast explored only a new ten-gene pattern each cycle, an 
unbiased walk would require 5.6 × 1022 such rounds to sample the entire space 
once, which is about 1.9 × 1020 years, corresponding to a random searcher esti-
mate of τblind ≈ 6 × 1027 s. The empirical trajectory, by contrast, converges on 
a viable solution in 37 days (Emmons-Bell et al., 2019, Fig. 1A-D), which gives 
τagent ≈ 3.2 × 106 s. A simple calculation using our Eq. 2 yields a search effi-
ciency K = log10

(
6 × 1027 s/3.2 × 106 s

)
≈ 21, roughly 1021 times more efficient 

than the null model, corresponding to about 70 bits of path-information gain. Thus, 
even when the baseline is set by an extravagantly conservative random walk, which 
greatly underestimates K, the worm’s weeks-long developmental program elimi-
nates roughly ten-billion-fold of futile exploration in problem space.

Two additional technical remarks. First, the calculation deliberately underesti-
mates both the dimensionality of the ion-channel manifold (e.g., many regulators 
never reach significance in the bulk RNA-seq) and the combinatorial complexity 
of downstream post-translational control. Hence, K ≈ 21 should be read as a mini-
mal empirically-derived bound on intelligent search. Second, the estimate already 
discounts the massive parallelism of 105 neoblasts; without it, τblind stretches by 
another five orders of magnitude, significantly increasing K.
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7  Conclusion

Zooming out, the search efficiency construct expresses intelligence in the combinato-
rial geometry of problem spaces. The quintuple P  delineates the search landscape, 
whereas K records, on a logarithmic scale, the extent to which an agent prunes the 
futile branches of that space relative to a maximal-entropy walk. Yet specifying the 
blind walk is itself an inference problem: one must commit to a cost metric w, a 
constraint set C, and an operator alphabet O that are simultaneously faithful to the 
biological scale under scrutiny and commensurate with the null model. To give a neu-
robiological example, for a cortical microcircuit of 104 neurons and 106 synapses, 
should the random walk wander through synaptic-weight vectors, firing-rate trajec-
tories, or entire spike sequences? Each choice alters |S| by orders of magnitude and, 
thus, shifts K by an additive constant.

The upshot is that these modeling contingencies must be made transparent; other-
wise, convincing skeptics such as Figdor (2022) that cross-lineage comparisons are 
methodologically sound amounts to hand-waving. K’s virtue lies precisely in forcing 
such commitments into the open and rendering their quantitative impact explicit. 
When those commitments are made conservatively, as in the amoeba and planarian 
exemplars above, seemingly simple organisms still register many magnitude order 
gains over chance, which gives preliminary modeling reasons to seat them at the 
cognitive table (Barron et al., 2023, Lyon et al., 2021; Rorot, 2022; Lyon and Cheng, 
2023; Seifert et al., 2024). As a final point to par the “freewheeling use of func-
tional ascriptions” criticism by Figdor (2022), we note that, while our proposal is 
substrate-agnostic at the level of the P + K calculus, the empirical models we pro-
posed showcase that biological efficiency is ultimately realised by substrate-involv-
ing mechanisms that compute with a model. In practice, cells and tissues implement 
generative-model computations (e.g., via ion channels, bioelectric circuits, gene-reg-
ulatory and cytoskeletal dynamics, etc.) that evaluate options over a finite prediction 
horizon and thereby select paths of least action or, equivalently, maximal efficiency. 
This “model computation” explains why realizers matter: bioelectric and morpholog-
ical priors and constraints sculpt the space of reachable states that define the problem 
and create search efficiency gradients; conversely, editing constraints or operators (as 
in planarian bioelectric reprogramming) re-tiles the landscape and shortens optimal 
paths. In this sense, the realizer is not simply a carrier of dynamics (“just physics”) 
but rather the physical possibility condition for there being a problem and the com-
putational means by which problem-solving efficiency is achieved.

Therefore, the current paper serves, fundamentally, as a challenge: if what is made 
measurable and quantifiable here is not cognition, then what is? We re-examined the 
diverse intelligence research program (Levin et al., 2021; Lyon et al., 2021; Fields 
and Levin, 2022; Levin, 2022, 2023a; Lyon and Cheng, 2023) through the lens of 
combinatorial search theory. After a conceptual roadmap in Sect. 3, Sect. 4 introduced 
a scale-agnostic quintuple P = ⟨S, O, C, E, H⟩ that reformulates classical problem-
space analysis so that constraints, evaluation functionals, and predictive horizons are 
included besides states and operators. On that foundation, we defined search effi-
ciency, K, as the logarithmic ratio of the expected cost of a blind random walk to that 
of an agentic policy (Eq. (2)). Empirically plausible models of amoeboid chemotaxis 
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(K ≈ 2) (Sect. 5) and barium-induced planarian head regeneration (K ≈ 21) (Sect. 
6) demonstrated that even ostensibly simple organisms prune combinatorial search 
spaces by several orders of magnitude when judged against conservative null base-
lines. Upcoming work will further sharpen this apparatus by extensively linking it 
with the Bayesian mechanics of the Free Energy Principle (Chis-Ciure et al., 2025).

Our overarching ambition has been to stitch a golden thread through the concep-
tual, methodological, and formal trenches of the “cognition wars” (Adams, 2018) 
and sharpen a bio-cosmopolitan notion of intelligence, one that acknowledges the 
skeptics’ call for rigor (Loy et al., 2021), while providing formal purchase on the 
expansive claims of the diverse intelligence program. The problem-space formalism 
gives a structured lexicon for describing goal-directed behavior “all the way down” 
(Levin and Dennett, 2020). As we have shown, this formalism accommodates and 
encourages empirically traceable parameterization, which addresses concerns about 
lineage-specificity and substrate-dependence (Figdor, 2022) by tying functional 
ascriptions to material histories. By operationalizing intelligence via the scalar K, we 
shift attention from familiar semantic deadlocks toward an experimentally tractable, 
scale-invariant metric.

The true synthetic power of our approach, however, lies in its multi-scale incarna-
tion. Instead of discrete leaps in representational kin, the resulting picture depicts the 
major transitions of evolution as compound interest on investments in cross-scale 
search acceleration. We, therefore, anticipate that combining the P +K calculus with 
high-resolution multi-omics, live-imaging, and synthetic-biology platforms opens 
the door to a comparative science of intelligent search. We hope that this will be a 
powerful toolkit for enabling insight into how biological systems find the answers 
they continuously seek in difficult, high-dimensional spaces, and for facilitating the 
development of intervention strategies in biomedicine and bioengineering that take 
advantage of biological search efficiency for inducing desired outcomes. In the end, 
the value of a continuous view of life and mind will be demonstrated by the empirical 
utility of communicating with and benefiting from the wisdom of the agential mate-
rial of life. The “mark of the cognitive” (Adams and Garrison, 2013), then, is best 
sought in the measurable efficiency with which living systems, from single cells to 
complex organisms, traverse energy and information gradients to tame combinatorial 
explosions-one problem space at a time.
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